Biodiversity and Conservation

, Volume 19, Issue 10, pp 2873–2893 | Cite as

Towards an assessment of multiple ecosystem processes and services via functional traits

  • Francesco de BelloEmail author
  • Sandra Lavorel
  • Sandra Díaz
  • Richard Harrington
  • Johannes H. C. Cornelissen
  • Richard D. Bardgett
  • Matty P. Berg
  • Pablo Cipriotti
  • Christian K. Feld
  • Daniel Hering
  • Pedro Martins da Silva
  • Simon G. Potts
  • Leonard Sandin
  • Jose Paulo Sousa
  • Jonathan Storkey
  • David A. Wardle
  • Paula A. Harrison
Original Paper


Managing ecosystems to ensure the provision of multiple ecosystem services is a key challenge for applied ecology. Functional traits are receiving increasing attention as the main ecological attributes by which different organisms and biological communities influence ecosystem services through their effects on underlying ecosystem processes. Here we synthesize concepts and empirical evidence on linkages between functional traits and ecosystem services across different trophic levels. Most of the 247 studies reviewed considered plants and soil invertebrates, but quantitative trait–service associations have been documented for a range of organisms and ecosystems, illustrating the wide applicability of the trait approach. Within each trophic level, specific processes are affected by a combination of traits while particular key traits are simultaneously involved in the control of multiple processes. These multiple associations between traits and ecosystem processes can help to identify predictable trait–service clusters that depend on several trophic levels, such as clusters of traits of plants and soil organisms that underlie nutrient cycling, herbivory, and fodder and fibre production. We propose that the assessment of trait–service clusters will represent a crucial step in ecosystem service monitoring and in balancing the delivery of multiple, and sometimes conflicting, services in ecosystem management.


Ecosystem functioning Functional diversity Indicators Multitrophic communities Plant, animal and microbial biodiversity 



This work was supported by the RUBICODE Coordination Action (Rationalising Biodiversity Conservation in Dynamic Ecosystems) funded under the Sixth Framework Programme of the European Commission (Contract No. 036890). We are grateful for the critical comments from John Haslett, Fabien Quétier and several anonymous reviewers. Petr Šmilauer provided constructive suggestions on the multivariate example.


  1. Albrecht M, Duelli P, Muller C, Kleijn D, Schmid B (2007) The Swiss agri-environment scheme enhances pollinator diversity and plant reproductive success in nearby intensively managed farmland. J Appl Ecol 44:813–822CrossRefGoogle Scholar
  2. Bailey VL, Smith JL, Bolton H (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol Biochem 34:997–1007CrossRefGoogle Scholar
  3. Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156CrossRefPubMedGoogle Scholar
  4. Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268CrossRefGoogle Scholar
  5. Beier CM, Patterson TM, Chapin FS (2008) Ecosystem services and emergent vulnerability in managed ecosystems: a geospatial decision-support tool. Ecosystems 11:923–938CrossRefGoogle Scholar
  6. Bengtsson J (1998) Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function. Appl Soil Ecol 10:191–199CrossRefGoogle Scholar
  7. Bennett EM, Balvanera P (2007) The future of production systems in a globalized world. Front Ecol Environ 5:191–198CrossRefGoogle Scholar
  8. Berg M, de Ruiter P, Didden W, Janssen M, Schouten T, Verhoef H (2001) Community food web, decomposition and nitrogen mineralisation in a stratified Scots pine forest soil. Oikos 94:130–142CrossRefGoogle Scholar
  9. Boyero L, Pearson RG, Bastian M (2007) How biological diversity influences ecosystem function: a test with a tropical stream detritivore guild. Ecol Res 22:551–558CrossRefGoogle Scholar
  10. Bradford MA, Jones TH, Bardgett RD, Black HIJ, Boag B, Bonkowski M, Cook R, Eggers T, Gange AC, Grayston SJ, Kandeler E, McCaig AE, Newington JE, Prosser JI, Setala H, Staddon PL, Tordoff GM, Tscherko D, Lawton JH (2002) Impacts of soil faunal community composition on model grassland ecosystems. Science 298:615–618CrossRefPubMedGoogle Scholar
  11. Brauman KA, Daily GC, Duarte TK, Mooney HA (2007) The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu Rev Environ Resour 32:67–98CrossRefGoogle Scholar
  12. Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992CrossRefPubMedGoogle Scholar
  13. Carpenter SR, Mooney HA, Agard J, Capistrano D, DeFries RS, Díaz S, Dietz T, Duraiappah AK, Oteng-Yeboah A, Pereira HM, Perrings C, Reid WV, Sarukhan J, Scholes RJ, Whyte A (2009) Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc Natl Acad Sci USA 106:1305–1312Google Scholar
  14. Chan KMA, Shaw MR, Cameron DR, Underwood EC, Daily GC (2006) Conservation planning for ecosystem services. PLoS Biol 4:2138–2152Google Scholar
  15. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380CrossRefGoogle Scholar
  16. Díaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655CrossRefGoogle Scholar
  17. Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Marti G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Diez P, Funes G, Hamzehee B, Khoshnevi M, Perez-Harguindeguy N, Perez-Rontome MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martinez M, Romo-Diez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304Google Scholar
  18. Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689Google Scholar
  19. Dijkstra FA, Hobbie SE, Reich PB (2006) Soil processes affected by sixteen grassland species grown under different environmental conditions. Soil Sci Soc Am J 70:770–777CrossRefGoogle Scholar
  20. Dolédec S, Statzner B, Bournard M (1999) Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river. Freshw Biol 42:737–758CrossRefGoogle Scholar
  21. Engelhardt KAM (2006) Relating effect and response traits in submersed aquatic macrophytes. Ecol Appl 16:1808–1820CrossRefPubMedGoogle Scholar
  22. Eviner VT, Chapin FS (2003) Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Evol Syst 34:455–485CrossRefGoogle Scholar
  23. Faber JH (1991) Functional classification of soil fauna—a new approach. Oikos 62:110–117CrossRefGoogle Scholar
  24. Fontaine C, Dajoz I, Meriguet J, Loreau M (2006) Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities. PLoS Biol 4:129–135CrossRefGoogle Scholar
  25. Fox JW, Harpole WS (2008) Revealing how species loss affects ecosystem function: the trait-based price equation partition. Ecology 89:269–279CrossRefPubMedGoogle Scholar
  26. Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C, Grigulis K, Jouany C, Kazakou E, Kigel J, Kleyer M, Lehsten V, Lepš J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quested H, Quétier F, Robson M, Roumet C, Rusch G, Skarpe C, Sternberg M, Theau JP, Thebault A, Vile D, Zarovali MP (2007) Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann Bot 99:967–985CrossRefPubMedGoogle Scholar
  27. Gerino M, Stora G, Francois-Carcaillet F, Gilbert F, Poggiale JC, Mermillod-Blondin F, Desrosiers G, Vervier P (2003) Macro-invertebrate functional groups in freshwater and marine sediments: a common mechanistic classification. Vie Milieu 53:221–231Google Scholar
  28. Graca MAS (2001) The role of invertebrates on leaf litter decomposition in streams—a review. Int Rev Hydrobiol 86:383–393CrossRefGoogle Scholar
  29. Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910CrossRefGoogle Scholar
  30. Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties. Wiley, Chichester, p 416Google Scholar
  31. Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH, Hendry GAF, Ashenden TW, Askew AP, Band SR, Booth RE, Bossard CC, Campbell BD, Cooper JEL, Davison AW, Gupta PL, Hall W, Hand DW, Hannah MA, Hillier SH, Hodkinson DJ, Jalili A, Liu Z, Mackey JML, Matthews N, Mowforth MA, Neal AM, Reader RJ, Reiling K, RossFraser W, Spencer RE, Sutton F, Tasker DE, Thorpe PC, Whitehouse J (1997) Integrated screening validates primary axes of specialisation in plants. Oikos 79:259–281CrossRefGoogle Scholar
  32. Harrington R, Anton C, Dawson TP, de Bello F, Feld CK, Haslett JR, Kluvánkova-Oravská T, Kontogianni A, Lavorel S, Luck GW, Rounsevell MDA, Samways MJ, Settele J, Skourtos M, Spangenberg JH, Vandewalle M, Zobel M, Harrison PA (2010) Ecosystem services and biodiversity conservation: concepts and a glossary. Biodivers Conserv. doi: 10.1007/s10531-010-9834-9
  33. Hattenschwiler S, Gasser P (2005) Soil animals alter plant litter diversity effects on decomposition. Proc Natl Acad Sci USA 102:1519–1524Google Scholar
  34. Heemsbergen DA, Berg MP, Loreau M, van Haj JR, Faber JH, Verhoef HA (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306:1019–1020CrossRefPubMedGoogle Scholar
  35. Hodgson JG, Montserrat-Marti G, Tallowin J, Thompson K, Díaz S, Cabido M, Grime JP, Wilson PJ, Band SR, Bogard A, Cabido R, Caceres D, Castro-Diez P, Ferrer C, Maestro-Martinez M, Perez-Rontome MC, Charles M, Cornelissen JHC, Dabbert S, Perez-Harguindeguy N, Krimly T, Sijtsma FJ, Strijker D, Vendramini F, Guerrero-Campo J, Hynd A, Jones G, Romo-Diez A, Espuny LD, Villar-Salvador P, Zak MR (2005) How much will it cost to save grassland diversity? Biol Conserv 122:263–273CrossRefGoogle Scholar
  36. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  37. Klumpp K, Fontaine S, Attard E, Le Roux X, Gleixner G, Soussana JF (2009) Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community. J Ecol 97:876–885CrossRefGoogle Scholar
  38. Kremen C (2005) Managing ecosystem services: what do we need to know about their ecology? Ecol Lett 8:468–479CrossRefGoogle Scholar
  39. Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vazquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein AM, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314CrossRefPubMedGoogle Scholar
  40. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556CrossRefGoogle Scholar
  41. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using Canoco. Cambridge University Press, Cambridge, 282 ppGoogle Scholar
  42. Lepš J, Osbornovakosinova J, Rejmanek M (1982) Community stability, complexity and species life-history strategies. Vegetatio 50:53–63CrossRefGoogle Scholar
  43. Lepš J, de Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78:481–501Google Scholar
  44. Loring PA, Chapin FS, Gerlach SC (2008) The services-oriented architecture: ecosystem services as a framework for diagnosing change in social ecological systems. Ecosystems 11:478–489CrossRefGoogle Scholar
  45. Luck GW, Harrington R, Harrison PA, Kremen C, Berry PM, Bugter R, Dawson TP, de Bello F, Díaz S, Feld CK, Haslett JR, Hering D, Kontogianni A, Lavorel S, Rounsevell M, Samways MJ, Sandin L, Settele J, Sykes MT, van den Hove S, Vandewalle M, Zobel M (2009) Quantifying the contribution of organisms to the provision of ecosystem services. Bioscience 59:223–235CrossRefGoogle Scholar
  46. Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118CrossRefGoogle Scholar
  47. Meerhoff M, Mazzeo N, Moss B, Rodriguez-Gallego L (2003) The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquat Ecol 37:377–391CrossRefGoogle Scholar
  48. Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC, 86 ppGoogle Scholar
  49. Mokany K, Ash J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J Ecol 96:884–893CrossRefGoogle Scholar
  50. Moretti M, de Bello F, Roberts SPM, Potts SG (2009) Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. J Anim Ecol 78:98–108CrossRefPubMedGoogle Scholar
  51. Nelson JL, Zavaleta ES, Chapin FS (2008) Boreal fire effects on subsistence resources in Alaska and adjacent Canada. Ecosystems 11:156–171CrossRefGoogle Scholar
  52. Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron DR, Chan KMA, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw MR (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7:4–11CrossRefGoogle Scholar
  53. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758CrossRefPubMedGoogle Scholar
  54. Quétier F, Lavorel S, Thuiller W, Davies I (2007) Plant-trait-based modelling assessment of ecosystem service sensitivity to land-use change. Ecol Appl 17:2377–2386CrossRefPubMedGoogle Scholar
  55. Rutgers M, Schouten AJ, Bloem J, van Eekeren N, de Goede RGM, Akkerhuis GAJM, van der Wal A, Mulder C, Brussaard L, Breure AM (2009) Biological measurements in a nationwide soil monitoring network. Eur J Soil Sci 60:820–832CrossRefGoogle Scholar
  56. Seeber J, Scheu S, Meyer E (2006) Effects of macro-decomposers on litter decomposition and soil properties in alpine pastureland: a mesocosm experiment. Appl Soil Ecol 34:168–175CrossRefGoogle Scholar
  57. Spehn EM, Scherer-Lorenzen M, Schmid B, Hector A, Caldeira MC, Dimitrakopoulos PG, Finn JA, Jumpponen A, O’Donnovan G, Pereira JS, Schulze ED, Troumbis AY, Korner C (2002) The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos 98:205–218CrossRefGoogle Scholar
  58. Suding KN, Lavorel S, Chapin FS, Cornelissen HC, Diaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas ML (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Chang Biol 14:1125–1140CrossRefGoogle Scholar
  59. Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302CrossRefGoogle Scholar
  60. Trenbath BR (1974) Biomass productivity of mixtures. Adv Agron 26:177–210CrossRefGoogle Scholar
  61. Turpie J, Joubert A (2004) The value of flower tourism on the Bokkeveld Plateau—a botanical hotspot. Dev South Afr 21:645–662CrossRefGoogle Scholar
  62. Wall DH (ed) (2004) Sustaining biodiversity and ecosystem services in soils and sediments. Island Press, Washington, DCGoogle Scholar
  63. Wardle DA, Barker GM, Bonner KI, Nicholson KS (1998) Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? J Ecol 86:405–420CrossRefGoogle Scholar
  64. Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633CrossRefPubMedGoogle Scholar
  65. Wojdak JM, Mittelbach GG (2007) Consequences of niche overlap for ecosystem functioning: an experimental test with pond grazers. Ecology 88:2072–2083CrossRefPubMedGoogle Scholar
  66. Zimmer M, Kautz G, Topp W (2005) Do woodlice and earthworms interact synergistically in leaf litter decomposition? Funct Ecol 19:7–16CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Francesco de Bello
    • 1
    Email author
  • Sandra Lavorel
    • 1
  • Sandra Díaz
    • 2
  • Richard Harrington
    • 3
  • Johannes H. C. Cornelissen
    • 4
  • Richard D. Bardgett
    • 5
  • Matty P. Berg
    • 4
  • Pablo Cipriotti
    • 6
  • Christian K. Feld
    • 7
  • Daniel Hering
    • 7
  • Pedro Martins da Silva
    • 8
  • Simon G. Potts
    • 9
  • Leonard Sandin
    • 10
  • Jose Paulo Sousa
    • 8
  • Jonathan Storkey
    • 3
  • David A. Wardle
    • 11
  • Paula A. Harrison
    • 12
  1. 1.Laboratoire d’Ecologie Alpine, UMR CNRS 5553Université Joseph FourierGrenoble Cedex 9France
  2. 2.MBIV (CONICET-UNC) and FCEFyN, Universidad Nacional de CórdobaCórdobaArgentina
  3. 3.Department of Plant and Invertebrate EcologyRothamsted ResearchHarpenden, HertsUK
  4. 4.Institute of Ecological Science, Faculty of Earth and Life SciencesVU University AmsterdamAmsterdamThe Netherlands
  5. 5.Institute of Environmental and Natural Sciences, Soil and Ecosystem EcologyLancaster UniversityLancasterUK
  6. 6.Cátedra de Métodos Cuantitativos Aplicados, Facultad de AgronomíaUniversidad de Buenos AiresBuenos AiresArgentina
  7. 7.Applied Zoology/Hydrobiology, Faculty of Biology and GeographyUniversity of Duisburg-EssenEssenGermany
  8. 8.IMAR-CIC, Department of ZoologyUniversity of CoimbraCoimbraPortugal
  9. 9.Centre for Agri-Environmental ResearchUniversity of ReadingReading, BerksUK
  10. 10.Department of Environmental AssessmentSwedish University of Agricultural SciencesUppsalaSweden
  11. 11.Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
  12. 12.Environmental Change InstituteOxford University Centre for the EnvironmentOxfordUK

Personalised recommendations