Advertisement

Biodiversity and Conservation

, Volume 19, Issue 8, pp 2371–2387 | Cite as

Intermediary disturbance increases tree diversity in riverine forest of southern Brazil

  • Jean Carlos BudkeEmail author
  • João André Jarenkow
  • Ary Teixeira de Oliveira-Filho
Original Paper

Abstract

Floods are frequently associated with disturbance in structuring riverine forests and they lead to environmental heterogeneity over space and time. We evaluated the distribution of tree species, ecological groups, species richness and diversity from the point bar to the slope of a riverside forest in southern Brazil (Lat. 30°01′S, Long. 52°47′W) to analyze the effects of flooding on soil properties and forest structure. A plot of 50 × 200 m divided in five contiguous transects of 10 × 200 m parallel to the river was installed, where we measured all the individual trees with pbh ≥ 15 cm. A detailed topographical and soil survey was carried out across the plot and indicated significant differences in organic matter and most mineral nutrients through the topographical gradient. The 1,229 surveyed individuals belonged to 72 species and 35 families. We used Partial CCA and Species Indicator Analysis to observe the spatial distribution of species. Both analyses showed that species distribution was strongly related to the flooding gradient, soil properties and also by space and pure spatial structuring of species and environmental variables (spatial autocorrelation), although a large part of variation remains unexplained. The ecological groups of forest stratification, plant dispersal and requirements for germination indicated slight differences among frequently, occasional and non-flooded transects. Species richness and diversity were higher at intermediate elevations and were associated to the increased spatial–temporal environmental heterogeneity. Across the plot, the direct influence of flooding on tree species distribution created a vegetation zonation that is determined by predicted ecological traits.

Keywords

Disturbance Ecological groups Flooding regime Partial CCA Soil properties Species richness and diversity 

Notes

Acknowledgements

We are grateful to the Programa de Pós-Graduação em Botânica of the Universidade Federal do Rio Grande do Sul—UFRGS, for the opportunity to undertake this study and to CAPES Agency for the scholarship granted to the first author. Our special thanks to Diogo “Bagual” Lindenmaier for fieldwork assistance and to Ricardo Braga, Eduardo Rossi and colleagues of the Laboratório de Fitoecologia—UFRGS for critiques and suggestions. We also appreciated the reviewing efforts of anonymous contributors, for providing useful comments to the manuscript.

Supplementary material

10531_2010_9845_MOESM1_ESM.doc (256 kb)
Table S1 Structural parameters of a riverine forest on the Botucaraí river, southern Brazil. AF = absolute frequency (%), ADo = absolute dominance (m2 ha−1), EG = ecological groups, P = pioneer, Ld = light-demanding and St = shade-tolerant; S = small, M = medium, T = tall; Zoo-Z = zoochorous, Ane = anemochorous, Aut = Autochorous, Hyd = Hydrochorous. Families were ordered according to importance values (DOC 257 kb)

References

  1. Baldwin DS, Mitchell AM (2000) The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis. Regul River 16:457–467. doi: 10.1002/1099-1646 CrossRefGoogle Scholar
  2. Barroso GM, Morim MP, Peixoto AL, Ichaso CLF (1999) Frutos e sementes: morfologia aplicada à sistemática de dicotiledôneas. Editora UFV, ViçosaGoogle Scholar
  3. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi: 10.1029/2006WR005044 CrossRefGoogle Scholar
  4. Brock MA (2003) Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshw Biol 48:1207–1218. doi: 10.1046/j.1365-2427.2003.01083.x CrossRefGoogle Scholar
  5. Budke JC, Athayde EA, Giehl ELH, Záchia RA, Eisinger SM (2005) Composição florística e estratégias de dispersão de espécies lenhosas em uma floresta ribeirinha, arroio Passo das Tropas, Santa Maria, RS, Brasil. Iheringia Bot 60:17–24Google Scholar
  6. Budke JC, Jarenkow JA, Oliveira-Filho AT, Lindenmaier DS (2006) Padrões de riqueza e diversidade em rios de pequeno porte. In: Mariath JEA, Santos RP (eds) Os avanços da botânica no início do século XXI. SBB, Porto AlegreGoogle Scholar
  7. Budke JC, Jarenkow JA, Oliveira-Filho AT (2007) Relationships between tree component structure, topography and soils of a riverine forest, Rio Botucaraí, southern Brazil. Plant Ecol 189:187–200. doi: 10.1007/s11258-006-9174-8 CrossRefGoogle Scholar
  8. Budke JC, Jarenkow JA, Oliveira-Filho AT (2008) Tree community features of two stands of riverine forest under different flooding regimes in southern Brazil. Flora 203:162–174. doi: 10.1016/j.flora.2007.03.001 Google Scholar
  9. Cardoso E, Schiavini I (2002) Relação entre distribuição de espécies arbóreas e topografia em um gradiente florestal na Estação Ecológica do Panga (Uberlândia, MG). Rev Bras Bot 25:277–289CrossRefGoogle Scholar
  10. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. doi: 10.1126/science.199.4335.1302 CrossRefPubMedGoogle Scholar
  11. Damasceno-Junior GA, Semir J, Santos FAM, Leitão-Filho HF (2005) Structure, distribution of species and inundation in a riparian forest of Rio Paraguai, Pantanal, Brazil. Flora 200:119–135. doi: 10.1016/j.flora.2004.09.002 Google Scholar
  12. Désilets P, Houle G (2005) Effects of resource availability and heterogeneity on the slope of the species-area curve along a floodplain-upland gradient. J Veg Sci 16:487–496. doi: 10.1658/1100-9233 CrossRefGoogle Scholar
  13. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  14. EMBRAPA (1997) Manual de métodos de análises de solo. Empresa Brasileira de Pesquisa Agropecuária and Centro Nacional de Pesquisas de Solos, Rio de JaneiroGoogle Scholar
  15. Ferreira LV (2000) Effects of flooding duration on species richness, floristic composition and forest structure in river margin habitat in Amazonian blackwater floodplain forests: implications for future design of protected areas. Biodivers Conserv 9:1–14. doi: 10.1023/A:1008989811637 CrossRefGoogle Scholar
  16. Ferreira LV, Stohlgren TJ (1999) Effects of river level fluctuation on plant species richness, diversity, and distribution in a floodplain forest in Central Amazonia. Oecologia 120:582–587. doi: 10.1007/s004420050893 CrossRefGoogle Scholar
  17. Ferreira C, Piedade MTF, Franco AC, Gonçalves JFC, Junk WJ (2009) Adaptive strategies to tolerate prolonged flooding in seedlings of floodplain and upland populations of Himatanthus sucuuba, a Central Amazon tree. Aquat Bot 90:246–252. doi: 10.1016/j.aquabot.2008.10.006 CrossRefGoogle Scholar
  18. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi: 10.1046/j.1461-0248.2001.00230.x CrossRefGoogle Scholar
  19. Guilherme FAG, Oliveira-Filho AT, Appolinário V, Bearzoti E (2004) Effects of flooding regime and woody bamboos on tree community dynamics in a section of tropical semideciduous forest in south-eastern Brazil. Plant Ecol 174:19–36. doi: 10.1023/B:VEGE.0000046051.97752.cd CrossRefGoogle Scholar
  20. Huston M (1994) Biological diversity: the coexistence of species in changing landscapes. Cambridge University Press, CambridgeGoogle Scholar
  21. IPAGRO (1982) Atlas agroclimático do Rio Grande do Sul. Pallotti, Porto AlegreGoogle Scholar
  22. Johansson ME, Nilsson C, Nilsson E (1996) Do rivers function as corridors for plant dispersal? J Veg Sci 7:593–598CrossRefGoogle Scholar
  23. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can J Fish Aquat Sci 106:110–127Google Scholar
  24. Legendre P (1993) Spatial autocorrelation—trouble or new paradigm? Ecology 74:1659–1673CrossRefGoogle Scholar
  25. Leinz V (1949) Contribuição à geologia dos derrames basálticos do Rio Grande do Sul. Bol Fac Filos Let 58:1–55Google Scholar
  26. Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends Ecol Evol 19:94–100. doi: 10.1016/j.tree.2003.10.002 CrossRefPubMedGoogle Scholar
  27. McCune B, Mefford MJ (1997) PC–ORD. Multivariate analysis of ecological data, version 4.36. MjM Software Design, Glaneden BeachGoogle Scholar
  28. Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. John Wiley, New YorkGoogle Scholar
  29. Neiff JJ (1990) Ideas para la interpretación ecológica del Paraná. Interciencia 15:424–441Google Scholar
  30. Neiff JJ, Neiff M (2003) Pulso: software para análisis de fenómenos recurrentes. http://www.neiff.com. Cited 25 May 2009
  31. Oliveira-Filho AT, Vilela EA, Gavilanes ML, Carvalho DA (1994) Effect of flooding regime and understory bamboos on the physiognomy and tree species composition of a tropical semideciduous forest in south-eastern Brazil. Vegetatio 113:99–124Google Scholar
  32. Oliveira-Filho AT, Curi N, Vilela EA, Carvalho DA (2001) Variation in tree community composition and structure with changes in soil properties within a fragment of semideciduous forest in south-eastern Brazil. Edinb J Bot 58:139–158. doi: 10.1017/S0960428601000506 CrossRefGoogle Scholar
  33. Oliveira-Filho AT, Jarenkow JA, Rodal MJN (2006) Floristic relationships of seasonally dry forests of eastern South America based on tree species distribution patterns. In: Pennington RT, Ratter JA, Lewis GP (eds) Neotropical savannas and dry forests: plant diversity, biogeography and conservation. CRC Press, Boca RatonGoogle Scholar
  34. Parolin P (2001) Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia 128:326–335. doi: 10.1007/s004420100660 CrossRefGoogle Scholar
  35. Parolin P, de Simone O, Haase K, Waldhoff D, Rottenberger S, Kuhn U, Kesselmeier J, Kleiss B, Schmidt W, Piedade MTF, Junk WJ (2004) Central Amazonian floodplain forests: tree adaptations in a pulsing system. Bot Rev 70:357–380. doi: 10.1663/0006-8101(2004)070[0357:CAFFTA]2.0.CO;2 CrossRefGoogle Scholar
  36. Pijl L (1982) Principles of dispersal in higher plants. Springer, New YorkGoogle Scholar
  37. Pillar VD (2006) Multivariate exploratory analysis, randomization testing and bootstrap resampling, version 2.3.20. Departamento de Ecologia UFRGS, Porto AlegreGoogle Scholar
  38. Pollock MM, Naiman RJ, Hanley TA (1998) Plant species richness in riparian wetlands—a test of biodiversity theory. Ecology 79:94–105Google Scholar
  39. Robertson KM (2006) Distributions of tree species along point bars of 10 rivers in the south-eastern US Coastal Plain. J Biogeogr 33:121–132. doi: 10.1111/j.1365-2699.2005.01371.x CrossRefGoogle Scholar
  40. Rosales J, Petts G, Knab-Vispo C (2001) Ecological gradients within the riparian forests of the lower Caura river, Venezuela. Plant Ecol 152:101–118. doi: 10.1023/A:1011411020040 CrossRefGoogle Scholar
  41. Stevens MHH, Carson WP (2002) Resource quantity, not resource heterogeneity, maintains plant diversity. Ecol Lett 5:420–426. doi: 10.1046/j.1461-0248.2002.00333.x CrossRefGoogle Scholar
  42. Streck EV, Kämpf N, Dalmolin RSD, Klamt E, Nascimento PC, Schneider P (2002) Solos do Rio Grande do Sul. EMATER/RS and UFRGS, Porto AlegreGoogle Scholar
  43. Swaine MD, Whitmore TC (1988) On the definition of ecological species groups in tropical rain forests. Vegetatio 75:81–86CrossRefGoogle Scholar
  44. Tabacchi E, Correll DL, Hauer R, Pinay G, Planty-Tabacchi AM, Wissmar R (1998) Development, maintenance and role of riparian vegetation in the river landscape. Freshw Biol 40:497–516. doi: 10.1046/j.1365-2427.1998.00381.x CrossRefGoogle Scholar
  45. ter Braack CJF, Smilauer P (1998) Canoco reference manual and user’s guide to Canoco for Windows: software for canonical community ordination (version 4.0). Microcomputer Power, IthacaGoogle Scholar
  46. ter Braak CJF (1995) Ordination. In: Jongman RHG, ter Braak CJF, van Togeren OFR (eds) Data analysis in community and landscape ecology. Cambridge University Press, New YorkGoogle Scholar
  47. Titeux N, Dufrêne M, Jacob JP, Paquay M, Defourny P (2004) Multivariate analysis of fine-scale breeding bird atlas using a geographical information system and partial canonical correspondence analysis: environmental and spatial effects. J Biogeogr 31:1841–1856. doi: 10.1111/j.1365-2699.2004.01125.x CrossRefGoogle Scholar
  48. Turner MG, Gergel SE, Dixon MD, Miller JR (2004) Distribution and abundance of trees in floodplain forests of the Wisconsin river: environmental influences at different scales. J Veg Sci 15:729–738Google Scholar
  49. Vreugdenhil SJ, Kramer K, Pelsma T (2006) Effects of flooding duration, frequency and depth on the presence of saplings of six woody species in north-west Europe. For Ecol Manage 236:47–55. doi: 10.1016/j.foreco.2006.08.329 CrossRefGoogle Scholar
  50. Walker KF, Sheldon F, Puckridge JT (1995) A perspective on dryland river ecosystems. Regul River 11:85–104. doi: 10.1002/rrr.3450110108 CrossRefGoogle Scholar
  51. Weiher E (2003) Species richness along multiple gradients: testing a general multivariate model in oak savannas. Oikos 101:311–316. doi: 10.1034/j.1600-0706.2003.12216.x CrossRefGoogle Scholar
  52. Wittmann F, Junk WJ, Piedade MTF (2004) The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. For Ecol Manage 196:199–212. doi: 10.1016/j.foreco.2004.02.060 CrossRefGoogle Scholar
  53. Worbes M, Klinge H, Revilla JD, Martius C (1992) On the dynamics, floristic subdivision and geographical distribution of Várzea forests in Central Amazonia. J Veg Sci 3:553–564CrossRefGoogle Scholar
  54. Zar JH (1996) Biostatistical analysis. Prentice-Hall, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jean Carlos Budke
    • 1
    Email author
  • João André Jarenkow
    • 2
  • Ary Teixeira de Oliveira-Filho
    • 3
  1. 1.Departamento de Ciências BiológicasUniversidade Regional Integrada do Alto Uruguai e das Missões—URIErechimBrazil
  2. 2.Departamento de BotânicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Departamento de BotânicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations