Biodiversity and Conservation

, Volume 20, Issue 2, pp 345–358 | Cite as

Dormancy release and seed ageing in the endangered species Silene diclinis

  • Sara Mira
  • M. Elena González-Benito
  • Ana M. Ibars
  • Elena EstrellesEmail author
Original Paper


The influence of seed testa color, temperature and seed water content on dormancy release and seed viability loss in the endangered, endemic species Silene diclinis (Lag.) M. Laínz was evaluated. Dormant heterogeneous seeds (black, red and grey colored) were exposed to three different temperatures (5, 20, and 35°C) and two relative humidities (33 and 60%) in order to assay their dormancy release. Longevity behavior was studied for the three colored seeds, storing samples at nine different combinations of temperature (5, 20 and 35°C) and relative humidities (33, 60 and 90%). According to our findings, seed heteromorphism was not related to neither break of dormancy nor seed storage behavior. Silene diclinis seeds present dormancy after collection, and need an after-ripening period to germinate. Temperature and relative humidity are positively correlated with dormancy release and seed ageing. Therefore, both factors must be carefully controlled during seed manipulation in the laboratory for long term seed conservation purposes. When seeds are stored immediately after collection (dormant), if the temperature of storage is above the base temperature for dormancy release found in this work (between 2.7 and 1.6°C), seeds may eventually overcome dormancy. On the other hand if seeds are stored after an after-ripening period, storage at low temperature does not induce secondary dormancy.


Caryophyllaceae Dormancy release Endangered plants Ex situ conservation Seed ageing Seed coat color Seed heterogeneity Seed longevity Silene diclinis Storage conditions 



Dormancy release rate


Fresh weigh


Germination percentage


Relative humidity


Thermal time






Base temperature for dormancy release


Water content



This work was supported by the project CGL2006-10536 (Ministerio de Educación y Ciencia, Spain). S.M. was supported by a FPU program (Ministerio de Educación y Ciencia, Spain). The authors thank Marcelino de la Cruz (UPM) for his help with R program.


  1. Atak M, Kaya MD, Kaya G, Kaya M, Khawar KM (2008) Dark green colored seeds increase the seed vigor and germination ability in dry green pea (Pisum sativum L.). Pak J Bot 40(6):2345–2354Google Scholar
  2. Bair NB, Meyer SE, Allen PS (2006) A hydrothermal after-ripening time model for seed dormancy loss in Bromus tectorum L. Seed Sci Res 16(1):17–28CrossRefGoogle Scholar
  3. Baskin CC, Baskin JM (1998) Seeds. Ecology, biogeography, and evolution of dormancy and germination. Academic Press, San DiegoGoogle Scholar
  4. Baskin JM, Nan XY, Baskin CC (1998) A comparative study of seed dormancy and germination in an annual and a perennial species of Senna (Fabaceae). Seed Sci Res 8:501–512CrossRefGoogle Scholar
  5. Beadle NCW (1952) Studies in halophytes.1. The germination of the seed and establishment of the seedlings of 5 species of Atriplex in Australia. Ecology 33:49–62CrossRefGoogle Scholar
  6. Benech-Arnold RL, Fenner M, Edwards PJ (1992) Changes in dormancy level in Sorghum halepense seeds induced by water-stress during seed development. Funct Ecol 6:596–605CrossRefGoogle Scholar
  7. Benech-Arnold RL, Sánchez RA, Forcella F, Kruk BC, Ghersa CM (2000) Enviromental control of dormancy in weed seed banks in soil. Field Crops Res 67:105–122CrossRefGoogle Scholar
  8. Bewley JD, Black M (1995) Seeds: physiology of development and germination. Plenum Press, New YorkGoogle Scholar
  9. Debeaujon I, Leon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122:403–413CrossRefPubMedGoogle Scholar
  10. Debeaujon I, Lepiniec L, Pourcel L, Routaboul JM (2007) Seed coat development and dormancy. In: Bradford K, Nonogaki H (eds) Seed development, dormancy and germination. Annual Plant Reviews, 27. Oxford, UK, pp 25–49CrossRefGoogle Scholar
  11. Diederichsen A, Jones-Flory LL (2005) Accelerated aging tests with seeds of 11 flax (Linum usitatissimum) cultivars. Seed Sci Technol 33:419–429Google Scholar
  12. Doucet C, Cavers PB (1997) Induced dormancy and color polymorphism in seeds of the bull thistle Cirsium vulgare (Savi) Ten. Seed Sci Res 7:399–407CrossRefGoogle Scholar
  13. Duran JM, Retamal N (1989) Coat structure and regulation of dormancy in Sinapis arvensis L. seeds. J Plant Physiol 135:218–222Google Scholar
  14. Fuentes Molina N, Estrelles E (2005) Respuesta germinativa de Brassica repanda (Willd.) DC. subsp. maritima (Willk.) Heywood., Lavandula pedunculata (Mill.) Cav. y Silene cambessedesii Boiss. & Reut. [Germinative response of Brassica repanda (Willd.) DC. subsp. maritima (Willk.) Heywood., Lavandula pedunculata (Mill.) Cav. and Silene cambessedesii Boiss. & Reut.]. Anales de Biología 27:63–68Google Scholar
  15. Gutterman Y (1994a) Long-term seed position influences on seed germinability of the desert annual, Mesembryanthemium nodiflorum L. Israel J Plant Sci 42:197–205Google Scholar
  16. Gutterman Y (1994b) Strategies of seed dispersal and germination in plants inhabiting deserts. Bot Rev 60:373–425CrossRefGoogle Scholar
  17. Halward T, Shaw R (1996) Germination requirements and conversation of an endangered Hawaiian plant species (Silene lanceolata). Nat Area J 16(4):335–343Google Scholar
  18. Hay FR, Adams J, Manger K, Probert R (2008) The use of non-saturated lithium chloride solutions for experimental control of seed water content. Seed Sci Technol 36:737–746Google Scholar
  19. Huang G, McCrate AJ, Varrianomarston E, Paulsen GM (1983) Caryopsis structural and imbibitional characteristics of some hard red and white wheats. Cereal Chem 60:161–165Google Scholar
  20. Imbert E (2002) Ecological consequences and ontogeny of seed heteromorphism. Perspect Plant Ecol Evol Syst 5:13–36CrossRefGoogle Scholar
  21. International Seed Testing Association (ISTA) (2003) International rules for seed testing. Basserdorf, CH- SwitzerlandGoogle Scholar
  22. Khan M, Cavers PB, Kane M, Thompson K (1997) Role of the pigmented seed coat of prose millet (Panicum miliaceum L.) in imbibition, germination and seed persistence. Seed Sci Res 7:21–25CrossRefGoogle Scholar
  23. Mansanet J, Mateo G (1980) Dos endemismos valencianos: Antirrhinum valentinum Font Quer y Silene diclinis (Lag.) Laínz. Anales Jard Bot Madrid 36:129–134Google Scholar
  24. Matilla A, Gallardo M, Puga-Hermida MI (2005) Structural, physiological and molecular aspects of heterogeneity in seeds: a review. Seed Sci Res 15:63–76CrossRefGoogle Scholar
  25. Mira S, Estrelles E, Ibars AM (2005) Estado de conservación de las poblaciones naturales de Silene diclinis y actuaciones de conservación ex situ [Conservation state of natural populations of Silene diclinis and ex situ conservation activities]. Paper presented at the II Congreso de Biología de la Conservación de Plantas, Jardín Botánico Atlántico, Gijon, 21–23 Septiembre 2005Google Scholar
  26. Mondoni A, Daws MI, Belotti J, Rossi G (2009) Germination requirements of the alpine endemic Silene elisabethae Jan: effects of cold stratification, light and GA3. Seed Sci Technol 37(1):79–87Google Scholar
  27. Montesinos D, Güemes J (2003) Silene diclinis. In: Bañares Baudet A, Blanca G, Güemes Heras J, Moreno Saiz JC, Ortiz S (eds) Atlas y Libro Rojo de la Flora Vascular Amenazada de España. Madrid, pp 854–855Google Scholar
  28. Montesinos D, Garcia-Fayos P, Mateu I (2006) Conflicting selective forces underlying seed dispersal in the endangered plant Silene diclinis. Int J Plant Sci 167(1):103–110CrossRefGoogle Scholar
  29. Powell AA (1989) The importance of genetically-determined seed coat characteristics to seed quality in grain legumes. Ann Bot-London 63:169–175Google Scholar
  30. Powell AA, Oliveira MD, Matthews S (1986) The role of imbibition damage in determining the vigor of white and colored seed lots of Dwarf French beans (Phaseolus vulgaris). J Exp Bot 37:716–722CrossRefGoogle Scholar
  31. Puga-Hermida MI, Gallardo M, Rodriguez-Gacio MD, Matilla AJ (2003) The heterogeneity of turnip-tops (Brassica rapa) seeds inside the silique affects germination, the activity of the final step of the ethylene pathway, and abscisic acid and polyamine content. Funct Plant Biol 30:767–775CrossRefGoogle Scholar
  32. Rivas-Martínez S, Rivas-Sáenz S (2009) Worldwide bioclimatic classification system. Retrieved Jul 23, 2009, from Phytosociological Research Center, Complutense University of Madrid (Spain)
  33. Steadman KJ (2004) Dormancy release during hydrated storage in Lolium rigidum seeds is dependent on temperature, light quality, and hydration status. J Exp Bot 55:929–937CrossRefPubMedGoogle Scholar
  34. Steadman KJ, Crawford AD, Gallagher RS (2003) Dormancy release in Lolium rigidum seeds is a function of thermal after-ripening time and seed water content. Funct Plant Biol 30:345–352CrossRefGoogle Scholar
  35. R Development Core Team (2008) R: a language and environment for statistical computing. (Vienna, Austria. URL
  36. Thompson PA (1970) Changes in germination responses of Silene secundiflora in relation to climate of its habitat. Physiol Plant 23(4):739Google Scholar
  37. Thompson PA (1975) Characterization of germination responses of Silene dioica (L) Clairv, populations from Europe. Ann Bot 39(159):1–19Google Scholar
  38. Venable DL (1985) The evolutionary ecology of seed heteromorphism. Am Nat 126:577–595CrossRefGoogle Scholar
  39. Walters C, Wheeler LM, Grotenhuis JM (2005) Longevity of seeds stored in a genebank: species characteristics. Seed Sci Res 15:1–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sara Mira
    • 1
  • M. Elena González-Benito
    • 1
  • Ana M. Ibars
    • 2
  • Elena Estrelles
    • 2
    Email author
  1. 1.Departamento de Biología Vegetal, Escuela Universitaria de Ingeniería Técnica AgrícolaUniversidad Politécnica de MadridMadridSpain
  2. 2.ICBiBE-Jardí BotànicUniversitat de ValènciaValenciaSpain

Personalised recommendations