Biodiversity and Conservation

, Volume 19, Issue 10, pp 2921–2947 | Cite as

Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms

  • Marie VandewalleEmail author
  • Francesco de Bello
  • Matty P. Berg
  • Thomas Bolger
  • Sylvain Dolédec
  • Florence Dubs
  • Christian K. Feld
  • Richard Harrington
  • Paula A. Harrison
  • Sandra Lavorel
  • Pedro Martins da Silva
  • Marco Moretti
  • Jari Niemelä
  • Paulo Santos
  • Thomas Sattler
  • J. Paulo Sousa
  • Martin T. Sykes
  • Adam J. Vanbergen
  • Ben A. Woodcock
Original Paper


Rigorous and widely applicable indicators of biodiversity are needed to monitor the responses of ecosystems to global change and design effective conservation schemes. Among the potential indicators of biodiversity, those based on the functional traits of species and communities are interesting because they can be generalized to similar habitats and can be assessed by relatively rapid field assessment across eco-regions. Functional traits, however, have as yet been rarely considered in current common monitoring schemes. Moreover, standardized procedures of trait measurement and analyses have almost exclusively been developed for plants but different approaches have been used for different groups of organisms. Here we review approaches using functional traits as biodiversity indicators focussing not on plants as usual but particularly on animal groups that are commonly considered in different biodiversity monitoring schemes (benthic invertebrates, collembolans, above ground insects and birds). Further, we introduce a new framework based on functional traits indices and illustrate it using case studies where the traits of these organisms can help monitoring the response of biodiversity to different land use change drivers. We propose and test standard procedures to integrate different components of functional traits into biodiversity monitoring schemes across trophic levels and disciplines. We suggest that the development of indicators using functional traits could complement, rather than replace, the existent biodiversity monitoring. In this way, the comparison of the effect of land use changes on biodiversity is facilitated and is expected to positively influence conservation management practices.


Bioindicators Birds Carabids Collembola Functional diversity Macroinvertebrates Community weighted mean trait Standardized biodiversity monitoring 



Mean trait per community


Functional diversity


Landscape unit



This work was supported by the RUBICODE Coordination Action Project (Rationalizing Biodiversity Conservation in Dynamic Ecosystems) funded under the Sixth Framework Programme of the European Commission (Contract No. 036890). The study on urban birds was part of the interdisciplinary project ‘BiodiverCity’ ( funded by the Swiss National Science Foundation as a project of the NRP54 ‘Sustainable development of the built environment’.


  1. Bady P, Dolédec S, Fesl C, Gayraud G, Bacchi M, Schöll F (2005) Use of invertebrate traits for the biomonitoring of European large rivers: the effects of sampling effort on genus richness and functional diversity. Freshw Biol 50(1):159–173Google Scholar
  2. Balmford AL, Bennun L, ten Brink B, Cooper D, Côté IM, Crane P, Dobson A, Dudley N, Dutton I, Green RE, Gregory RD, Harrison J, Kennedy ET, Kremen C, Leader-Williams N, Lovejoy TE, Mace G, May R, Mayaux P, Morling P, Phillips J, Redford K, Ricketts TH, Rodríguez JP, Sanjayan M, Schei PJ, van Jaarsveld AS, Walther BA (2005) The convention on biological diversity’s 2010 target. Science 307(5707):212–213PubMedGoogle Scholar
  3. Barbaro L, van Halder I (2009) Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography 32(2):321–333Google Scholar
  4. Barrocas HM, da Gama MM, Sousa JP, Ferreira C (1998) Impact of reafforestation with Eucalyptus globulus Labill. on the edaphic collembolan fauna from Serra de Monchique (Algarve). Misc Zool 21(2):9–23Google Scholar
  5. Behan-Pelletier VM (1999) Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric Ecosyst Environ 74:411–423Google Scholar
  6. Bezzel E (1993) Kompendium der Vögel Mitteleuropas: Passeres-Singvögel. Aula-Verlag, WiesbadenGoogle Scholar
  7. Bibby CJ, Burgess ND, Hill DA (1992) Bird census techniques. Academic Press, LondonGoogle Scholar
  8. Billeter R, Liira J, Bailey D, Bugter R, Arens P, Augenstein I, Aviron S, Baudry J, Bukacek R, Burel F, Cerny M, De Blust G, De Cock R, Diekotter T, Dietz H, Dirksen J, Dormann C, Durka W, Frenzel M, Hamersky R, Hendrickx F, Herzog F, Klotz S, Koolstra B, Lausch A, Le Coeur D, Maelfait JP, Opdam P, Roubalova M, Schermann A, Schermann N, Schmidt T, Schweiger O, Smulders MJM, Speelmans M, Simova P, Verboom J, van Wingerden WKRE, Zobel M, Edwards PJ (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–150Google Scholar
  9. Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523PubMedGoogle Scholar
  10. Bongers T (1990) The Maturity Index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19Google Scholar
  11. Bongers T, Bongers M (1998) Functional diversity of nematodes. Appl Soil Ecol 10:239–251Google Scholar
  12. Bremner J, Rogers SI, Frid CLJ (2006) Matching biological traits to environmental conditions in marine benthic ecosystems. J Mar Syst 60:302–316Google Scholar
  13. Breure AM, Mulder CM, Römbke J, Ruf A (2005) Ecological classification and assessment concepts in soil protection. Ecotoxicol Environ Safe 62:211–229Google Scholar
  14. Carlisle DM, Hawkins CP (2008) Land use and the structure of western US stream invertebrate assemblages: predictive models and ecological traits. J North Am Benthol Soc 27(4):986–999Google Scholar
  15. Charvet S, Kosmala A, Statzner B (1998) Biomonitoring through biological traits of benthic macroinvertebrates: perspectives for a general tool in stream management. Arch Hydrobiol 142:415–432Google Scholar
  16. Chevenet F, Dolédec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshw Biol 31:295–309Google Scholar
  17. Clergeau P, Jokimäki J, Savard J-P (2001) Are urban bird communities influenced by the bird diversity of adjacent landscapes? J Appl Ecol 38:1122–1134Google Scholar
  18. Clergeau P, Croci S, Jokimäki J, Kaisanlahti-Jokimaki ML, Dinetti M (2006) Avifauna homogenisation by urbanisation: analysis at different European latitudes. Biol Conserv 127:336–344Google Scholar
  19. Cooch EG, Ricklefs RE (1994) Do variable environments significantly influence optimal reproductive effort in birds. Oikos 69:447–459Google Scholar
  20. Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51(4):335–380Google Scholar
  21. da Gama MM, Nogueira A, Múrias dos Santos AFA (1991) Effets du reboisement par Eucalyptus globulus sur les Collemboles édaphiques. Rev Ecol Biol Sol 28(1):9–18Google Scholar
  22. da Gama MM, Vasconcelos TM, Sousa JP (1994) Collembola diversity in Portuguese autocthonous and allocthonous forests. Acta Zool Fenn 195:44–46Google Scholar
  23. Daily GC (1995) Restoring value to the worlds degraded lands. Science 269(5222):350–354PubMedGoogle Scholar
  24. de Bello F, Leps J, Sebastia MT (2006) Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 29(6):801–810Google Scholar
  25. de Bello F, Buchmann N, Casals P, Leps J, Sebastia MT (2009) Relating plant species and functional diversity to community [delta]13C in NE Spain pastures. Agric Ecosyst Environ 131(3–4):303–307Google Scholar
  26. de Bello F, Lavorel S, Gerhold P, Reier Ü, Pärtel M (2010) A biodiversity indication framework for practical conservation of grasslands and shrublands. Biol Conserv 143:9–17Google Scholar
  27. de Bello F, Lavorel S, Diaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P, Feld CK, Hering D, Martin da Silva P, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle DA, Harrison PA (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv (this issue)Google Scholar
  28. Diaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104(52):20684–20689PubMedGoogle Scholar
  29. Diaz AM, Alonso MLS, Gutierrez MRVA (2008) Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshw Biol 53:1–21Google Scholar
  30. Didham RK, Lawton JH, Hammond PM, Eggleton P (1998) Trophic structure stability and extinction dynamics of beetles (Coleoptera) in tropical forest fragments. Philos Trans R Soc Lond B Biol Sci 353:437–451Google Scholar
  31. Dolédec S, Statzner B (2008) Invertebrate traits for the biomonitoring of large European rivers: an assessment of specific types of human impact. Freshw Biol 53:617–634Google Scholar
  32. Dolédec S, Statzner B, Bournard M (1999) Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river. Freshw Biol 42:737–758Google Scholar
  33. Dolédec S, Phillips N, Scarsbrook MR, Riley RH, Townsend CR (2006) Comparison of structural and functional approaches to determining land-use effects on grassland stream invertebrate communities. J North Am Benthol Soc 25:44–60Google Scholar
  34. Douglas DJT, Vickery JA, Benton TG (2009) Improving the value of field margins as foraging habitat for farmland birds. J Appl Ecol 46:353–362Google Scholar
  35. Driscoll DA, Weir T (2005) Beetle responses to habitat fragmentation depend on ecological traits, habitat condition, and remnant size. Conserv Biol 19:182–194Google Scholar
  36. EASAC (European Academies Science Advisory Council) (2005) A user’s guide to biodiversity indicators. The Royal Society, London.
  37. EEA (European Environment Agency) (2007) Halting the loss of biodiversity by 2010: proposal for a first set of indicators to monitor progress in Europe. EEA technical report 11/2007, LuxembourgGoogle Scholar
  38. Faber JH (1991) Functional classification of soil fauna—a new approach. Oikos 62(1):110–117Google Scholar
  39. FAME Consortium (2005) Manual for application of the European Fish Index (EFI). A fish-based method to assess the ecological status of European rivers in support of the Water Framework Directive, version 1.1, January 2005, Rep. No. EVK1-CT-2001-00094Google Scholar
  40. Feld CK, Hering D (2007) Community structure or function: effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshw Biol 52:1380–1399Google Scholar
  41. Feld CK, Martins da Silva P, Sousa JP, de Bello F, Bugter R, Grandin U, Hering D, Lavorel S, Mountford O, Pardo I, Pärtel M, Römbke J, Sandin L, Jones KB, Harrison PA (2009) Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. Oikos 118(12):1862–1871Google Scholar
  42. Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Trautman Richers B, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33PubMedGoogle Scholar
  43. Foissner W (1999) Soil protozoa as bioindicators: pros and cons, methods, diversity, representative examples. Agric Ecosyst Environ 74:95–112Google Scholar
  44. Fontana S (2008) Responses of bird community and functional composition to ecological gradients in Swiss cities. Master thesis, Conservation Biology Department, University of BaselGoogle Scholar
  45. Garnier E, Cortez J, Billes G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85(9):2630–2637Google Scholar
  46. Gaucherand S, Lavorel S (2007) New method for rapid assessment of the functional composition of herbaceous plant communities. Austral Ecol 32(8):927–936Google Scholar
  47. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:351–379Google Scholar
  48. Graefe U, Schmelz R (1999) Indicator values, strategy types and life forms of terrestrial Enchytraeidae and other microannelids. Newsl Enchytraeidae 6:59–68Google Scholar
  49. Green RE, Balmford A, Crane PR, Mace GM, Reynolds JD, Turner RK (2005) A framework for improved monitoring of biodiversity: responses to the world summit on sustainable development. Conserv Biol 19(1):56–65Google Scholar
  50. Gregory RD, van Strien A, Vorisek P, Meyling AWG, Noble DG, Foppen RPB, Gibbons DW (2005) Developing indicators for European birds. Philos Trans R Soc B Biol Sci 360(1454):269–288Google Scholar
  51. Harrington R, Dawson T, Feld C, Haslett J, Kluvankova-Oravska T, Kontogianni A, Lavorel S, Luck G, Rounsevell M, Samways M, Skourtos M, Settele J, Spangenberg JH, Vandewalle M, Zobel M, Harrison PA (2010) Ecosystem services and biodiversity conservation: concepts and a glossary. Biodivers Conserv (this issue)Google Scholar
  52. Hendrickx F, Maelfait JP, Van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekotter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351Google Scholar
  53. Hering D, Feld CK, Moog O, Ofenbock T (2006) Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566:311–324Google Scholar
  54. Hodgson JG, Montserrat-Marti G, Cerabolini B, Ceriani RM, Maestro-Martinez M, Peco B, Wilson PJ, Thompson K, Grime JP, Band SR, Bogard A, Castro-Diez P, Charles M, Jones G, Perez-Rontome MC, Caccianiga M, Alard D, Bakker JP, Cornelissen JHC, Dutoit T, Grootjans AP, Guerrero-Campo J, Gupta PL, Hynd A, Kahmen S, Poschlod P, Romo-Diez A, Rorison IH, Rosen E, Schreiber KF, Tallowin J, Espuny LD, Villar-Salvador P (2005) A functional method for classifying European grasslands for use in joint ecological and economic studies. Basic Appl Ecol 6(2):119–131Google Scholar
  55. Hopkin S (1997) Biology of the springtails (Insecta: Collembola). Oxford University Press, OxfordGoogle Scholar
  56. Jänsch S, Römbke J, Didden W (2005) The use of enchytraeids in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:266–277PubMedGoogle Scholar
  57. Jiguet F, Gadot AS, Julliard R, Newson SE, Couvet D (2007) Climate envelope, life history traits and the resilience of birds facing global change. Glob Change Biol 13(8):1672–1684Google Scholar
  58. Karr JR (1981) Assessment of biotic integrity using fish communities. Fisheries 6(6):21–27Google Scholar
  59. Karr JR (1999) Defining and measuring river health. Freshw Biol 41:221–234Google Scholar
  60. Kennedy AC (1999) Bacterial diversity in agroecosystems. Agric Ecosyst Environ 74:65–76Google Scholar
  61. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimes L, Klimesova J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Gotzenberger L, Hodgson JG, Jackel AK, Kuhn I, Kunzmann D, Ozinga WA, Romermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA Traitbase: a database of life-history traits of Northwest European flora. J Ecol 96:1266–1274Google Scholar
  62. Lambeets K, Vandegehuchte ML, Maelfait JP, Bonte D (2008) Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. J Anim Ecol 77:1162–1174PubMedGoogle Scholar
  63. Lavorel S, Grigulis K, McIntyre S, Garden D, Williams N, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A (2008) Assessing functional diversity in the field—methodology matters!. Funct Ecol 22(1):134–147Google Scholar
  64. Lawton JH, Bignell DE, Bolton B, Bloemers GF, Eggleton P, Hammond PM, Hodda M, Holt RD, Larsen TB, Mawdsley NA, Stork NE, Srivastava DS, Watt AD (1998) Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391:72–76Google Scholar
  65. Leps J (2006) Biodiversity and plant mixtures in agriculture and ecology. In: Wachendorf M, Helgadóttir A, Parente G (eds) Sward dynamics, N-flows and forage utilization in legume-based systems. Proceedings of the 2nd COST 852 workshop, Grado, Italy, 10–12 Nov 2005, pp 13–20Google Scholar
  66. Lepš J, de Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78:481–501Google Scholar
  67. Levrel H (2007) Selecting indicators for the management of biodiversity. Les Cahiers de l’IFB, IFB Edition, ParisGoogle Scholar
  68. Lindberg N, Bengtsson J (2005) Population responses of oribatid mites and collembolans after drought. Appl Soil Ecol 28:163–174Google Scholar
  69. Mace GM, Baillie JEM (2007) The 2010 biodiversity indicators: challenges for science and policy. Conserv Biol 21(6):1406–1413PubMedCrossRefGoogle Scholar
  70. Maumary L, Valloton L, Knaus P (2007) Die Vögel der Schweiz. Schweizerische Vogelwarte, Sempach, und Nos Oiseaux, MontmollinGoogle Scholar
  71. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst.
  72. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260Google Scholar
  73. Moretti M, Legg C (2009) Combining plant and animal traits to assess community functional responses to disturbance. Ecography 32:299–309Google Scholar
  74. Moretti M, de Bello F, Roberts SPM, Potts SG (2009) Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. J Anim Ecol 78:98–108PubMedGoogle Scholar
  75. Mouillot D, Spatharis S, Reizopoulou S, Laugier T, Sabetta L, Basset A, Chi TD (2006) Alternatives to taxonomic-based approaches to assess changes in transitional water communities. Aquat Conserv 16(5):469–482Google Scholar
  76. Nahmani J, Lavelle P, Rossi J-P (2006) Does changing the taxonomic resolution alter the value of soil macroinvertebrates as bioindicators of metal pollution? Soil Biol Biochem 38:385–396Google Scholar
  77. Niemi GJ, McDonald M (2004) Application of ecological indicators. Annu Rev Ecol Syst 35:89–111Google Scholar
  78. Noss RF (1990) Indicators for monitoring biodiversity—a hierarchical approach. Conserv Biol 4(4):355–364Google Scholar
  79. Oliver I, Beattie AJ (1996) Designing a cost-effective invertebrate survey: a test of methods for rapid assessment of biodiversity. Ecol Appl 6:594–607Google Scholar
  80. Paoletti MG (1999) The role of earthworms for assessment of sustainability and as bioindicators. Agric Ecosyst Environ 74:137–155Google Scholar
  81. Parisi V (2001) The biological soil quality, a method based on microarthropods. Ateneo Parmense Acta Nat 37:97–106Google Scholar
  82. Pärtel M, Zobel M, Zobel K, van der Maarel E (1996) The species pool and its relation to species richness: evidence from Estonian plant communities. Oikos 75(1):111–117Google Scholar
  83. Pavoine S, Dolédec S (2005) The apportionment of quadratic entropy: a useful alternative for partitioning diversity in ecological data. Environ Ecol Stat 12(2):125–138Google Scholar
  84. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9(6):741–758PubMedGoogle Scholar
  85. Petchey OL, Evans KL, Fishburn IS, Gaston KJ (2007) Low functional diversity and no redundancy in British avian assemblages. J Anim Ecol 76:977–985PubMedGoogle Scholar
  86. Petit S, Usher MB (1998) Biodiversity in agricultural landscapes: the ground beetle communities of woody uncultivated habitats. Biodivers Conserv 7:1549–1561Google Scholar
  87. Pizzolotto R (2009) Characterization of different habitats on the basis of the species traits and eco-field approach. Acta Oecol Int J Ecol 35(1):142–148Google Scholar
  88. Ponge J-F, Dubs F, Gillet S, Sousa JP, Lavelle P (2006) Decreased biodiversity in soil springtail communities: the importance of dispersal and landuse history in heterogeneous landscapes. Soil Biol Biochem 38:1158–1161Google Scholar
  89. Pont D, Hugueny B, Beier U, Goffaux D, Melcher A, Noble R, Rogers C, Roset N, Schmutz S (2006) Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. J Appl Ecol 43:70–80Google Scholar
  90. Rao CR (1982) Diversity and dissimilarity coefficients—a unified approach. Theor Popul Biol 21(1):24–43Google Scholar
  91. Revaz E, Schaub M, Arlettaz R (2008) Foraging ecology and reproductive biology of the Stonechat Saxicola torquata: comparison between a revitalized, intensively cultivated and a historical, traditionally cultivated agro-ecosystem. J Ornithol 149:301–312Google Scholar
  92. Römbke J, Beck L, Förster B, Ruf A, Rosciczewski C, Scheurig M, Woas S, Fründ H-C, Beck L (1997) Boden als Lebensraum für Bodenorganismen und die bodenbiologische Standortklassifikation: Eine Literaturstudie. Texte und Berichte zum Bodenschutz 4/97. Landesanstalt Umweltschutz Baden-Württemberg, KarlsruheGoogle Scholar
  93. Römbke J, Jänsch S, Didden W (2005) The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:249–265PubMedGoogle Scholar
  94. Schouten AJ, Brussaard L, de Ruiter PC, Siepel H, Van Straalen NM (1997) Een indicatorsysteem voor life support functies van de bodem in relatie tot biodiversiteit. RIVM report 712910005. Rijksinstituut voor Volksgezondheid en Milieu, the Netherlands, 90 ppGoogle Scholar
  95. Schwab A, Dubois D, Fried PM, Edwards PJ (2002) Estimating the biodiversity of hay meadows in north-eastern Switzerland on the basis of vegetation structure. Agr Ecosyst Environ 93:197–209Google Scholar
  96. Schweiger O, Maelfait JP, Van Wingerden W, Hendrickx F, Billeter R, Speelmans M, Augenstein I, Aukema B, Aviron S, Bailey D, Bukacek R, Burel F, Diekotter T, Dirksen J, Frenzel M, Herzog F, Liira J, Roubalova M, Bugter R (2005) Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J Appl Ecol 42:1129–1139Google Scholar
  97. Shochat E, Warren PS, Faeth SH, McIntyre NE, Hope D (2006) From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol 21:186–191PubMedGoogle Scholar
  98. Siepel H (1995) Applications of microarthopod life-history tactics in nature management and ecotoxicology. Biol Fertil Soils 19:75–83Google Scholar
  99. Simpson EH (1949) Measurement of diversity. Nature 163(4148):688Google Scholar
  100. Sorace A, Gustin M (2008) Homogenization processes and local effects on avifaunal composition in Italian towns. Acta Oecol 33:15–26Google Scholar
  101. Sousa JP, da Gama MM (1994) Rupture in a Collembola community structure from a Quercus rotundifolia Lam. forest due to the reafforestation with Eucalyptus globulus Labill. Eur J Soil Biol 30(2):71–78Google Scholar
  102. Sousa JP, Vingada JV, Barrocas H, da Gama MM (1997) Effects of introduced exotic tree species on Collembola communities: the importance of management techniques. Pedobiologia 41:145–153Google Scholar
  103. Sousa JP, da Gama MM, Ferreira C, Barrocas H (2000) Effect of eucalyptus plantations on Collembola communities in Portugal: a review. Belg J Entomol 2:187–201Google Scholar
  104. Southwood TRE (1977) Habitat, the templet for ecological strategies? J Anim Ecol 46:337–365Google Scholar
  105. Statzner B, Bis B, Dolédec S, Usseglio-Polatera P (2001) Perspectives for biomonitoring at large spatial scales: a unified measure for the functional composition of invertebrate communities in European running waters. Basic Appl Ecol 2:73–85Google Scholar
  106. Statzner B, Bady P, Dolédec S, Scholl F (2005) Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of trait patterns in least impacted river reaches. Freshw Biol 50:2136–2161Google Scholar
  107. Statzner B, Bonada N, Dolédec S (2007) Conservation of taxonomic and biological trait diversity of European stream macroinvertebrate communities: towards a collective public database. Biodivers Conserv 16:3609–3632Google Scholar
  108. Steffan-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats. Ecol Lett 3:449–456Google Scholar
  109. Streamlining European 2010 Biodiversity Indicators (SEBI) (2010)
  110. Teder T, Moora M, Roosaluste E, Zobel K, Partel M, Koljalg U, Zobel M (2007) Monitoring of biological diversity: a common-ground approach. Conserv Biol 21(2):313–317PubMedGoogle Scholar
  111. Townsend CR, Hildrew AG (1994) Species traits in relation to habitat template for river systems. Freshw Biol 31:265–275Google Scholar
  112. Usher MB (1992) Management and diversity of arthropods in Calluna heathland. Biodivers Conserv 1:63–79Google Scholar
  113. Usseglio-Polatera P, Beisel JN (2002) Longitudinal changes in macroinvertebrate assemblages in the Meuse River: anthropogenic effects versus natural change. River Res Appl 18(2):197–211Google Scholar
  114. Usseglio-Polatera P, Bournaud M, Richoux P, Tachet H (2000) Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshw Biol 43:175–205Google Scholar
  115. Van Straalen NM (1998) Evaluation of bioindicator systems derived from soil arthropod communities. Appl Soil Ecol 9:429–437Google Scholar
  116. Van Straalen NM, Timmermans MJTN, Roelofs D, Berg MP (2008) Apterygota in the spotlights of ecology, evolution and genomics. Eur J Soil Biol 44:452–457Google Scholar
  117. Vanbergen AJ, Woodcock BA, Watt AD, Niemela J (2005) Effect of land-use heterogeneity on carabid communities at the landscape scale. Ecography 28:3–16Google Scholar
  118. Vieira NKM, Poff NL, Carlisle DM, Moulton II SR, Koski ML, Kondratieff BC (2006) A database of lotic invertebrate traits for North America: U.S. Geological Survey Data Series 187.
  119. Volz P (1962) Beiträge zu einer pedozoologischen Standortslehre. Pedobiologia 1:242–290Google Scholar
  120. Wolters V (2001) Biodiversity of soil animals and its function. Eur J Soil Biol 37:221–227Google Scholar
  121. Yeates GW, Bongers T (1999) Nematode diversity in agroecosystems. Agric Ecosyst Environ 74:113–135Google Scholar
  122. Zaitsev AS, Chauvat M, Pflug A, Wolters V (2002) Oribatid mite diversity and community dynamics in a spruce chronosequence. Soil Biol Biochem 34:1919–1927Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Marie Vandewalle
    • 1
    • 3
    Email author
  • Francesco de Bello
    • 1
    • 2
  • Matty P. Berg
    • 4
  • Thomas Bolger
    • 5
  • Sylvain Dolédec
    • 6
  • Florence Dubs
    • 7
  • Christian K. Feld
    • 8
  • Richard Harrington
    • 9
  • Paula A. Harrison
    • 10
  • Sandra Lavorel
    • 1
  • Pedro Martins da Silva
    • 11
  • Marco Moretti
    • 12
  • Jari Niemelä
    • 13
  • Paulo Santos
    • 11
  • Thomas Sattler
    • 12
  • J. Paulo Sousa
    • 11
  • Martin T. Sykes
    • 3
  • Adam J. Vanbergen
    • 14
  • Ben A. Woodcock
    • 15
  1. 1.Laboratoire d’Ecologie Alpine, UMR CNRS 5553Université Joseph FourierGrenoble Cedex 9France
  2. 2.Institute of BotanyCzech Academy of SciencesTřeboňCzech Republic
  3. 3.Department of Earth and Ecosystem SciencesLund UniversityLundSweden
  4. 4.Department of Animal Ecology, Institute of Ecological ScienceVU University, AmsterdamAmsterdamThe Netherlands
  5. 5.Department of ZoologyUniversity College DublinBelfield, DublinIreland
  6. 6.Laboratoire d’Ecologie des Hydrosystèmes FluviauxUniversité Lyon 1, UMR CNRS 5023VilleurbanneFrance
  7. 7.Institut de Recherche pour le Développement, UMR 137 BioSol.Centre Ile de France/Universités de ParisBondy CedexFrance
  8. 8.Department of Applied Zoology/HydrobiologyUniversity of Duisburg-EssenEssenGermany
  9. 9.Department of Plant and Invertebrate Ecology, Centre for Bioenergy and Climate ChangeRothamsted ResearchHarpendenUK
  10. 10.Environmental Change InstituteOxford University Centre for the Environment (OUCE)OxfordUK
  11. 11.Department of Life Sciences, IMAR - Marine and Environment Research CentreUniversity of CoimbraCoimbraPortugal
  12. 12.Research Unit Ecosystem BoundariesBellinzonaSwitzerland
  13. 13.Department of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  14. 14.NERC Centre for Ecology and HydrologyPenicuik, EdinburghUK
  15. 15.NERC Centre for Ecology and HydrologyCrowmarsh Gifford, WallingfordUK

Personalised recommendations