Biodiversity and Conservation

, Volume 19, Issue 6, pp 1599–1609 | Cite as

Preliminary global assessment of terrestrial biodiversity consequences of sea-level rise mediated by climate change

  • Shaily Menon
  • Jorge Soberón
  • Xingong Li
  • A. Townsend Peterson
Original paper


Considerable attention has focused on the climatic effects of global climate change on biodiversity, but few analyses and no broad assessments have evaluated effects of sea-level rise on biodiversity. Taking advantage of new maps of marine intrusion under scenarios of 1 and 6 m sea-level rise, we calculated areal losses for all terrestrial ecoregions globally, with areal losses for particular ecoregions ranging from nil to complete. Marine intrusion is a global phenomenon, but its effects are most prominent in Southeast Asia and nearby islands, eastern North America, northeastern South America, and western Alaska. Making assumptions regarding faunal responses to reduced distributional areas of species endemic to ecoregions, we estimated likely numbers of extinctions caused by sea-level rise, and found that marine-intrusion-caused extinctions of narrow endemics are likely to be most prominent in northeastern South America, although anticipated extinctions in smaller numbers are scattered worldwide. This assessment serves as a complement to recent estimates of losses owing to changing climatic conditions, considering a dimension of biodiversity consequences of climate change that has not previously been taken into account.


Climate change Sea-level change Marine intrusion Biodiversity Ecoregions Endemic species Extinction 

Supplementary material

10531_2010_9790_MOESM1_ESM.doc (560 kb)
Supplementary material 1 (DOC 560 kb)


  1. Anciães M, Peterson AT (2006) Climate change effects on neotropical manakin diversity based on ecological niche modeling. Condor 108:778–791CrossRefGoogle Scholar
  2. Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313:1396–1397CrossRefPubMedGoogle Scholar
  3. Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Change Biol 11:1504–1513CrossRefGoogle Scholar
  4. Bindschadler RA (1998) Future of the West Antarctic ice sheet. Science 282:428–429CrossRefGoogle Scholar
  5. Bosello F, Roson R, Tol R (2007) Economy-wide estimates of the implications of climate change: sea level rise. Environ Res Econ 37:549–571CrossRefGoogle Scholar
  6. Brooks TM, Pimm SL, Collar NJ (1997) The extent of deforestation predicts the number of birds threatened with extinction in insular South-east Asia. Conserv Biol 11:382–394CrossRefGoogle Scholar
  7. Brooks TM, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor C (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923CrossRefGoogle Scholar
  8. Buckley LB, Roughgarden J (2004) Biodiversity conservation: effects of changes in climate and land use. Nature 430:1CrossRefGoogle Scholar
  9. Carter TR, Jones RN, Lu X, Bhadwal S, Conde C, Mearns LO, O’Neill BC, Rounsevell MD, Zurek MB (2007) New assessment methods and the characterization of future conditions. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge, pp 133–171Google Scholar
  10. Daniels R, White T, Chapman K (1993) Sea-level rise: destruction of threatened and endangered species habitat in South Carolina. Environ Manag 17:373–385CrossRefGoogle Scholar
  11. Dasgupta S, Laplante B, Meisner C, Wheeler D, Yan J (2007) The impact of sea level rise on developing countries: a comparative analysis. World Bank, Washington, DCCrossRefGoogle Scholar
  12. Dobson A, Jolly A, Rubenstein D (1989) The greenhouse effect and biological diversity. Trends Ecol Evol 4:64–68CrossRefGoogle Scholar
  13. Drakare S, Lennon JJ, Hillebrand H (2006) The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol Lett 9:215–227CrossRefPubMedGoogle Scholar
  14. Dyurgerov MB, Meier MF (1997) Year-to-year fluctuations of global mass balance of small glaciers and their contribution to sea-level changes. Arct Alp Res 29:392–402CrossRefGoogle Scholar
  15. Erasmus BFN, Van Jaarsveld AS, Chown SL, Kshatriya M, Wessels KJ (2002) Vulnerability of South African animal taxa to climate change. Glob Change Biol 8:679–693CrossRefGoogle Scholar
  16. Galbraith H, Jones R, Park R, Clough J, Herrod-Julius S, Harrington B, Page G (2002) Global climate change and sea level rise: potential losses of intertidal habitat for shorebirds. Waterbirds 25:173–183CrossRefGoogle Scholar
  17. Gopal B, Chauhan M (2006) Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat Sci 68:338–354CrossRefGoogle Scholar
  18. Hitz S, Smith J (2004) Estimating global impacts from climate change. Glob Environ Change 14:201–218CrossRefGoogle Scholar
  19. Holt RD (1990) The microevolutionary consequences of climate change. Trends Ecol Evol 5:311–315CrossRefGoogle Scholar
  20. Kinzig AP, Harte J (2000) Implications of endemics-area relationships for estimates of species extinctions. Ecology 81:3305–3311Google Scholar
  21. LaFever DH, Lopez RR, Feagin RA, Silvy NJ (2007) Predicting the impacts of future sea-level rise on an endangered lagomorph. Environ Manag 40:430–437CrossRefGoogle Scholar
  22. Lewis OT (2006) Climate change, species–area curves and the extinction crisis. Phil Trans R Soc B: Biol Sci 361:163–171CrossRefGoogle Scholar
  23. Li X, Rowley RJ, Kostelnick JC, Braaten D, Meisel J, Hulbutta K (2009) GIS analysis of global impacts from sea level rise. Photogramm Eng Remote Sens 75(7):807–818Google Scholar
  24. Lomolino MV (2000) Ecology’s most general, yet protean pattern: the species area relationship. J Biogeogr 27:17–26CrossRefGoogle Scholar
  25. Lovejoy TE, Hannah L (eds) (2005) Climate change and biodiversity. Yale University Press, New HavenGoogle Scholar
  26. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  27. Marbaix P, Nicholls RJ (2007) Accurately determining the risks of rising sea level. EOS Trans 88(43):441–442CrossRefGoogle Scholar
  28. May RM, Stumpf MPH (2000) Species-area relations in tropical forests. Science 290:2084–2086CrossRefPubMedGoogle Scholar
  29. McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16:545–556CrossRefGoogle Scholar
  30. Mimura N (1999) Vulnerability of island countries in the South Pacific to sea level rise and climate change. Clim Res 12:137–143CrossRefGoogle Scholar
  31. Oerlemans J, Bassford RP, Chapman W, Dowdeswell JA, Glazovsky AF, Hagen JO, Melvold K, de Ruyter de Wildt M, van de Wal RSW (2005) Estimating the contribution of Arctic glaciers to sea-level change in the next 100 years. Ann Glaciol 42:230–236CrossRefGoogle Scholar
  32. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938CrossRefGoogle Scholar
  33. Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu A (2006) Simulating Arctic climate warmth and icefield retreat in the last intergalciation. Sci 311:1751–1753CrossRefGoogle Scholar
  34. Overpeck JT, Otto-Bliesner BL, Miller GH, Muhs DR, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Sci 311:1747–1750CrossRefGoogle Scholar
  35. Parmesan C (1996) Climate and species’ range. Nature 382:765–766CrossRefGoogle Scholar
  36. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefPubMedGoogle Scholar
  37. Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent J, Thomas JA, Warren M (1999) Poleward shift of butterfly species’ ranges associated with regional warming. Nature 399:579–583CrossRefGoogle Scholar
  38. Peters RL, Darling JDS (1985) The greenhouse effect and nature reserves. Bioscience 35:707–717CrossRefGoogle Scholar
  39. Peterson AT (2003) Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences. Glob Change Biol 9:647–655CrossRefGoogle Scholar
  40. Peterson AT, Ortega-Huerta MA, Bartley J, Sánchez-Cordero V, Soberón J, Buddemeier RH, Stockwell DRB (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629CrossRefPubMedGoogle Scholar
  41. Peterson AT, Tian H, Martínez-Meyer E, Soberón J, Sánchez-Cordero V, Huntley B (2005) Modeling distributional shifts of individual species and biomes. In: Lovejoy TE, Hannah L (eds) Climate change and biodiversity. Yale University Press, New Haven, pp 211–228Google Scholar
  42. Pimm SL, Raven P (2000) Extinction by numbers. Nature 403:843–845CrossRefPubMedGoogle Scholar
  43. Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615CrossRefGoogle Scholar
  44. Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science 311:986–990CrossRefPubMedGoogle Scholar
  45. Shepherd A, Wingham D (2007) Recent sea-level contributions of the Antarctic and Greenland ice sheets. Sci 315:1529–1532CrossRefGoogle Scholar
  46. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira de Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgely GE, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004a) Extinction risk from climate change. Nature 427:145–148CrossRefPubMedGoogle Scholar
  47. Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuna C, Akins T, Brecher H, Frederick E, Gogineni P, Krabill W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J (2004b) Accelerated sea-level rise from West Antarctica. Science 306:255–258CrossRefPubMedGoogle Scholar
  48. Thuiller W, Araujo MB, Pearson RG, Whittaker RJ, Brotons L, Lavorel S (2004) Biodiversity conservation: uncertainty in predictions of extinction risk. Nature 430:34CrossRefGoogle Scholar
  49. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250CrossRefPubMedGoogle Scholar
  50. Thuiller W, Midgely GF, Hughes GO, Bomhard B, Drew G, Rutherford MC, Woodward F (2006) Endemic species and ecosystem sensitivity to climate change in Namibia. Glob Change Biol 12:759–776CrossRefGoogle Scholar
  51. Titus JG (1990) Effect of climate change on sea-level rise and the implications for world agriculture. Hortscience 25:1567–1572Google Scholar
  52. Tjørve E (2003) Shapes and functions of species area curves: a review of possible models. J Biogeogr 30:827–835CrossRefGoogle Scholar
  53. Visser ME, van Noordwijk AJ, Tinbergen JM, Lessells CM (1998) Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc R Soc B 265:1867–1870CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Shaily Menon
    • 1
  • Jorge Soberón
    • 2
  • Xingong Li
    • 3
  • A. Townsend Peterson
    • 2
  1. 1.Department of BiologyGrand Valley State UniversityAllendaleUSA
  2. 2.Natural History Museum and Biodiversity Research CenterThe University of KansasLawrenceUSA
  3. 3.Department of GeographyThe University of KansasLawrenceUSA

Personalised recommendations