Biodiversity and Conservation

, Volume 19, Issue 5, pp 1269–1277 | Cite as

Vulnerable taxa of European Plecoptera (Insecta) in the context of climate change

  • J. M. Tierno de FigueroaEmail author
  • M. J. López-Rodríguez
  • A. Lorenz
  • W. Graf
  • A. Schmidt-Kloiber
  • D. Hering
Original Paper


We evaluated 516 species and/or subspecies of European stoneflies for vulnerability to climate change according to autoecological data. The variables considered were stream zonation preference, altitude preference, current preference, temperature range preference, endemism and rare species. Presence in ecoregions was used to analyse the vulnerability of taxa in relation to their distribution. We selected the variables that provided information on vulnerability to change in climate. Thus, we chose strictly crenal taxa, high-altitude taxa, rheobionts, cold stenotherm taxa, micro-endemic taxa and rare taxa. Our analysis showed that at least 324 taxa (62.79%) can be included in one or more categories of vulnerability to climate change. Of these, 43 taxa would be included in three or more vulnerability categories, representing the most threatened taxa. The most threatened species and the main factors affecting their distribution are discussed. Endangered potamal species, with populations that have decreased mainly as a consequence of habitat alteration, also could suffer from the effects of climate change. Thus, the total number of taxa at risk is particularly high. Not only are a great diversity of European stoneflies concentrated in the Alps, Pyrenees and Iberian Peninsula, but so are the most vulnerable taxa. These places are likely to be greatly affected by climate change according to climate models. In general, an impoverishment of European Plecoptera taxa will probably occur as a consequence of climate change, and only taxa with wide tolerance ranges will increase in abundance, resulting in lower overall faunal diversity.


Stoneflies Vulnerability Threatened taxa Global change Climate models Temperature Precipitation Europe 



The authors want to thank to all the experts that have provided the ecological data used in the development of the Plecoptera database and to two anonymous reviewers for their valuable comments that greatly improved the original manuscript. This study was supported by the EU-funded Integrated Project Euro-limpacs (GOCE-CT-2003-505540), Workpackage 7 (Indicators of Ecosystem Health).


  1. Alcamo J, Flörke M, Marker M (2007) Future long-term changes in global water resources driven by socio-economic and climatic change. Hydrol Sci J 52:247–275CrossRefGoogle Scholar
  2. Allan JD, Castillo MM (2008) Stream ecology. Structure and function of running waters, 2nd edn. Springer, DordrechtGoogle Scholar
  3. Arnell NW (2004) Climate change and global water resources: SRES emissions and socioeconomics scenarios. Glob Environ Change 14:31–52CrossRefGoogle Scholar
  4. Boulton AJ, Lake PS (2008) Effects of drought on stream insects and its ecological consequences. In: Lancaster J, Briers RA (eds) Aquatic insects. Challenges to populations. CABI, OxfordGoogle Scholar
  5. EEA (European Environment Agency) (2008) Impacts of Europe’s changing climate—2008 indicator-based assessment. Joint EEA-JRC-WHO report, CopenhagenGoogle Scholar
  6. Euro-Limpacs consortium (2008) The taxa and autecology database for freshwater organisms. Version 3.2, last update: 08.04.2009. Cited 20 Apr 2009
  7. Fochetti R, Tierno de Figueroa JM (2006) Notes on diversity and conservation of the European fauna of Plecoptera (Insecta). J Nat Hist 40(41–43):2361–2369CrossRefGoogle Scholar
  8. Fochetti R, Tierno de Figueroa JM (2008) Global diversity of stoneflies (Plecoptera; Insecta) in freshwater. Hydrobiol 595:365–377CrossRefGoogle Scholar
  9. Gitay H, Suñarez A, Watson RT, Dokken DJ (eds) (2002) Climate change and biodiversity. Intergovernmental Panel on Climate Change. WMO-UNEP, CambridgeGoogle Scholar
  10. Graf W (1999) Checkliste der Steinfliegen (Plecoptera) Österreichs. Lauterbornia. 3. Fachtagung der Stein- und Eintagsfliegen in Bad Bevensen. Heft 37:35–46Google Scholar
  11. Graf W (2005) Leuctra astridae, a new species of Plecoptera from the Austrian Alps. Illiesia 1(8):47–51Google Scholar
  12. Graf W, Stradner D, Weiss S (2008) A new Siphonoperla species from the Eastern Alps (Plecoptera: Chloroperlidae), with comments on the genus. Zootaxa 1891:31–38Google Scholar
  13. Graf W, Lorenz AW, Tierno de Figueroa JM, Lücke S, López-Rodríguez MJ, Davies C (2009) Distribution and ecological preferences of European freshwater organisms. vol 2: Plecoptera. Schmidt-Kloiber A, Hering D (Series editors). Pensoft, SofiaGoogle Scholar
  14. Hynes HBN (1970) The ecology of running waters. University of Toronto Press, TorontoGoogle Scholar
  15. Illies J (ed) (1978) Limnofauna Europaea. A checklist of the animals inhabiting European inland waters, with an account of their distribution and ecology. Gustav Fischer Verlag, StuttgartGoogle Scholar
  16. Knispel S, Rosciszewska E, Vinçon G, Lubini V (2002) The status of Perlodes jurassicus Aubert, 1946 (Insecta: Plecoptera: Perlodidae). Mitt Schweiz Ent Ges 75:183–189Google Scholar
  17. Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in stream flow and water availability in a changing climate. Nature 438(7066):347–350CrossRefPubMedGoogle Scholar
  18. Nakicenovic N, Alcamo J, Davis G et al. (2000) Special Report on Emissions Scenarios: a special report of working group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  19. Ravizza C (2005) Leuctra gardinii, an apteroud new species of Leuctridae (Plecoptera) from the Western Italian Alps. Aquat Insects 27(2):95–97CrossRefGoogle Scholar
  20. Ravizza C, Fochetti R (1999) I Plecotteri Taeniopterygidae della regione italica (Plecoptera). Mem Soc entomol ital 77:123–159Google Scholar
  21. Ravizza C, Vinçon G (1998) Les Leuctridés (Plecoptera, Leuctridae) des Alpes. Mitt Schweiz Ent Ges 71:285–342Google Scholar
  22. Resh VH, Rosenberg DM (1984) The ecology of aquatic insects. Preager Publishers, New YorkGoogle Scholar
  23. Rosenberg DM, Resh VH (1993) Freshwater biomonitoring and benthic macroinvertebrates. Chapman & Hall, LondonGoogle Scholar
  24. Shuter BJ, Post JR (1990) Climate, population viability and the zoogeography of temperate fishes. Trans Am Fish Soc 119:314–336CrossRefGoogle Scholar
  25. Sweeney BW, Jackson JK, Newbold JD, Funk DH (1992) Climate change and the life histories and biogeography of aquatic insects in eastern North America. In: Firth P, Fisher SG (eds) Global climate change and freshwater ecosystems. Springer-Verlag, New YorkGoogle Scholar
  26. Tierno de Figueroa JM, Sánchez-Ortega A, Membiela Iglesia P, Luzón-Ortega JM (2003) Plecoptera. In: Ramos MA et al (eds) Fauna Ibérica, vol 22. Museo Nacional de Ciencias Naturales, CSIC, MadridGoogle Scholar
  27. Vinçon G, Pardo I (2004) The stoneflies (Plecoptera, Insecta) of the northwestern Iberian Peninsula. Ann Limnol 40(1):43–62CrossRefGoogle Scholar
  28. Zwick P (1980) Plecoptera (Steinfliegen). In: Handb. Zool. Berlin, 26. Walter de Gruyter, BerlinGoogle Scholar
  29. Zwick P (1992) Stream habitat fragmentation—a threat to biodiversity. Biodivers Conserv 1:80–97CrossRefGoogle Scholar
  30. Zwick P (2004) Key to the West Paleartic genera of stoneflies (Plecoptera) in the larval stage. Limnologica 34:315–348Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • J. M. Tierno de Figueroa
    • 1
    Email author
  • M. J. López-Rodríguez
    • 1
  • A. Lorenz
    • 2
  • W. Graf
    • 3
  • A. Schmidt-Kloiber
    • 3
  • D. Hering
    • 2
  1. 1.Departamento de Biología AnimalUniversidad de GranadaGranadaSpain
  2. 2.Department of Applied Zoology/HydrobiologyUniversity of Duisburg-EssenEssenGermany
  3. 3.Department Water-Atmosphere-Environment, Institute of Hydrobiology and Aquatic Ecosystem ManagementUniversity of Natural Resources and Applied Life SciencesViennaAustria

Personalised recommendations