Advertisement

Biodiversity and Conservation

, Volume 19, Issue 1, pp 153–167 | Cite as

Gold coral (Savalia savaglia) and gorgonian forests enhance benthic biodiversity and ecosystem functioning in the mesophotic zone

  • C. Cerrano
  • R. Danovaro
  • C. Gambi
  • A. Pusceddu
  • A. Riva
  • S. Schiaparelli
original paper

Abstract

The twilight or mesophotic zone is amongst the less explored marine regions. In coastal areas, investigations and manipulative experiments on benthic biodiversity and ecosystem functioning at depths up to >50 m have been recently made possible by the progress of SCUBA techniques. In this study, we tested the effects of the presence of a gorgonian forest characterised by a large and dense population of the gold coral Savalia savaglia (Bertoloni 1819) on the benthic biodiversity (nematode species richness, and meiofauna community structure and richness of taxa), trophic guilds state (molluscs) and ecosystem functioning in the surrounding sediments. The S. savaglia colonies create elevated and complex tertiary structures. Our results indicate that the presence of these colonies was associated with a significantly increased deposition of bioavailable substrates and enhanced biodiversity, when compared with soft bottoms at the same depth but without gold corals. The higher biodiversity and altered trophic conditions resulted in higher rates of ecosystem functioning (e.g., higher benthic biomasses). These results suggest that S. savaglia should be particularly protected not only for its specific rarity, endemism and vulnerability but also because it has a prominent role in sustaining high levels of biodiversity and ecosystem functioning in the surrounding benthos of the twilight zone.

Keywords

Ecosystem engineers Benthic biodiversity Deep corals Savalia savaglia Mediterranean Sea 

Notes

Acknowledgments

We thank Bruno Borelli (Portofino Divers, http://portofinodivers.com/it) for diving assistance. This work was financially supported by the project HERMIONE (Hotspot Ecosystem Research and Man’s Impact on European Seas, FP7-ENV-2008-1 Contract N. 226354).

References

  1. Allen LH, Lemon E, Muller L (1972) Environment of a Costa Rican forest. Ecology 53:102–111CrossRefGoogle Scholar
  2. Anderson MJ (2003) DISTLM forward a FORTRAN computer program to calculate a distance-based multivariate analysis for a linear model using forward selection. Department of Statistics, University of Auckland, New ZealandGoogle Scholar
  3. Astraldi M, Manzella G (1983) Some observations on current measurements on the East Ligurian Shelf, Mediterranean Sea. Cont Shelf Res 2:183–193CrossRefGoogle Scholar
  4. Ávila SP, Malaquias MAE (2003) Biogeographical relationships of the molluscan fauna of the Ormonde Seamount (Gorringe Bank, Northeast Atlantic Ocean). J Mol Stud 69:145–150CrossRefGoogle Scholar
  5. Ávila SP, Cardigos F, Santos RS (2007) Comparison of the community structure of the marine mollusc of the “Banco D. João de Castro” seamount (Azores, Portugal) with that of typical inshore habitats on the Azores archipelago. Helgol Mar Res 61:43–53CrossRefGoogle Scholar
  6. Bavestrello G, Cattaneo-Vietti R, Danovaro R, Fabiano M (1991) Detritus rolling down a vertical cliff of the Ligurian Sea (Italy): the ecological role in hard bottom communities. P.S.Z.N.I. Mar Ecol 12:281–292CrossRefGoogle Scholar
  7. Bavestrello G, Cattaneo-Vietti R, Cerrano C et al (1995) Annual sedimentation rates and role of the resuspension processes along a vertical cliff (Ligurian Sea, Italy). J Coast Res 11:690–696Google Scholar
  8. Beaulieu SE (2001) Life on glass houses: sponge stalk communities in the deep sea. Mar Biol 138:803–817CrossRefGoogle Scholar
  9. Bell FJ (1891) Contributions of our knowledge of Antipatharian corals. Trans Zool Soc Lond 13:141–142Google Scholar
  10. Bouchet P, Warén A (1986) Revision of the Northeast Atlantic bathyal and abyssal Aclididae, Eulimidae, Epitonidae (Mollusca, Gastropoda). Boll Mal, Suppl 2:297–576Google Scholar
  11. Bruno JF, Bertness MD (2001) Habitat modification and facilitation in benthic marine communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, Sunderland, pp 201–218Google Scholar
  12. Bruno JF, Kennedy CW (2000) Patch-size dependent habitat modification and facilitation on New England cobble beaches by Spartina alterniflora. Oecologia 122:98–108CrossRefGoogle Scholar
  13. Buesseler KO, Lambor CH, Boyd PW et al (2007) Revisiting carbon flux through the ocean’s twilight zone. Science 316:567–570CrossRefPubMedGoogle Scholar
  14. Byers JE, Cuddington K, Jones CG et al (2006) Using ecosystem engineers to restore ecological systems. Trends Ecol Evol 21:493–500CrossRefPubMedGoogle Scholar
  15. Cerrano C, Calcinai B, Bertolino M et al (2006) Epibionts of the scallop Adamussium colbecki in the Ross Sea, Antarctica. Chem Ecol 22:235–244CrossRefGoogle Scholar
  16. Clarke KR (1993) Non parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  17. Danovaro R, Pusceddu A, Covazzi Harriague A et al (1999) Community experiments using benthic chambers: microbial significance in highly organic enriched sediments. Chem Ecol 16:7–30CrossRefGoogle Scholar
  18. Danovaro R, Gambi C, Dell’Anno A et al (2008) Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol 18:1–8CrossRefPubMedGoogle Scholar
  19. Davies DJ, Powell EN, Stanton RJ Jr (1989) Taphonomic signature as a function of environment process: shells and shell beds in a hurricane-influenced inlet on the Texas coast. Palaeogeo, Palaeoclim, Palaeoecol 72:317–356CrossRefGoogle Scholar
  20. Dayton PK (1972) Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Anarctica. Proc Coll Conserv Probl Antarctica 81–96Google Scholar
  21. de Boer WF (2007) Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia 591:5–24CrossRefGoogle Scholar
  22. Dell’Anno A, Pusceddu A, Langone L, Danovaro R (2008) Early diagenesis of organic matter in coastal sediments influenced by riverine inputs. Chem Ecol 24:75–85CrossRefGoogle Scholar
  23. Druffel ERM, Griffin S, Witter A et al (1995) Gerardia: bristlecone pine of the deep-sea? Geochim Cosmochim Acta 23:5031–5036CrossRefGoogle Scholar
  24. Eckman JE, Nowell ARM, Jumars PA (1981) Sediment destabilization by animal tubes. J Mar Res 39:365–374Google Scholar
  25. Freiwald A, Roberts JM (2005) Cold-water corals and ecosystems. Springer-Verlag, Berlin, 1243 pp, Printed in The NetherlandsGoogle Scholar
  26. Gacia E, Duarte CM (2001) Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Est Coast Shelf Sci 52:505–514CrossRefGoogle Scholar
  27. Gambi MC, Nowell ARM, Jumars PJ (1990) Flume observations on flow density dynamics in Zostera marina (eelgrass) beds. Mar Ecol Prog Ser 61:159–169CrossRefGoogle Scholar
  28. Gaylord B, Rosman JH, Reed DC et al (2007) Spatial patterns of flow and their modification within and around a giant kelp forest. Limnol Oceanogr 52:1838–1852Google Scholar
  29. Giribet G, Peñas A (1997) Malacological marine fauna from Garraf coast (NE Iberian Peninsula). Iberus 15:41–93Google Scholar
  30. Gofas S (2007) Rissoidae (Mollusca: Gastropoda) from northeast Atlantic seamounts. J Nat Hist 41:779–885CrossRefGoogle Scholar
  31. Gooday AJ, Bett BJ, Pratt DN (1993) Direct observation of episodic growth in an abyssal xenophyophore (Protista). Deep-Sea Res I 40:2131–2143CrossRefGoogle Scholar
  32. Grigg RW (2002) Precious corals in Hawaii: discovery of a new bed and revised management measures for existing beds. Mar Fish Rev 64:13–20Google Scholar
  33. Häussermann V (2003) Ordnung Zoantharia (=Zoanthiniaria, Zoanthidae) (Krustenanemonen). In: Hofrichter R (Hrsg), Das Mittelmeer, Fauna, Flora, Ökologie, Band II/1, Bestimmungsführer, Spektrum Akademischer Verlag, Heidelberg, Berlin, pp 501–505Google Scholar
  34. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Ocean Mar Biol Ann Rev 23:399–489Google Scholar
  35. Hurlbert SM (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586CrossRefGoogle Scholar
  36. Jackson GA, Winant CD (1983) Effect of a kelp forest on coastal currents. Cont Shelf Res 2:75–80CrossRefGoogle Scholar
  37. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386CrossRefGoogle Scholar
  38. Kiriakoulakis K, Bett BJ, White M, Wolff GA (2004) Organic biogeochemistry of the Darwin Mounds, a deep-water coral ecosystem, of the NE Atlantic. Deep Sea Res I 51:1937–1954CrossRefGoogle Scholar
  39. Lambshead PJD (2004) Marine nematode biodiversity. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology: advances and perspectives volume 1: nematode morphology, physiology and ecology. London, CABI Publishing, pp 436–467Google Scholar
  40. Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8CrossRefGoogle Scholar
  41. Lorenzen CJ, Jeffrey SW (1980) Determination of chlorophyll in seawater. UNESCO Tech Pap Mar Sci 35, 20 pGoogle Scholar
  42. Margalef DR (1958) Information theory in ecology. Gen Syst 3:36–71Google Scholar
  43. Nepf H, Ghisalberti M (2008) Flow and transport in channels with submerged vegetation. Acta Geophys 56:753–777CrossRefGoogle Scholar
  44. Ocaña O, Brito A (2004) A review of Gerardiidae (Anthozoa: Zoantharia) from Macaronesian Islands and the Mediterranean sea with the description of a new species. Rev Acad Canar Cienc 15:159–189Google Scholar
  45. Pielou EC (1975) Ecological diversity. Wiley, New York, 165 ppGoogle Scholar
  46. Platt HM, Warwick RM (1983) Freeliving marine nematode part I: British enoplids. Synopses of the British fauna no. 28. Cambridge University Press, CambridgeGoogle Scholar
  47. Platt HM, Warwick RM (1988) Freeliving marine nematodes. Part 11: British chromadorida. Synopses of the British fauna no. 38. Brill, LeiGoogle Scholar
  48. Pusceddu A, Sarà G, Armeni M et al (1999) Seasonal and spatial changes in the sediment organic matter of a semi-enclosed marine system (W-Mediterranean Sea). Hydrobiologia 397:59–70CrossRefGoogle Scholar
  49. Pusceddu A, Dell’Anno A, Fabiano M, Danovaro R (2004) Quantity and biochemical composition of organic matter in marine sediments. Biol Mar Medit 11(Suppl 1):39–53Google Scholar
  50. Pusceddu A, Fiordelmondo C, Polymenakou P et al (2005) Impact of bottom trawling on quantity, biochemical composition and bioavailability of sediment organic matter in coastal sediments (Thermaikos Gulf, Greece). Cont Shelf Res 25:2491–2505CrossRefGoogle Scholar
  51. Pusceddu A, Fraschetti S, Mirto S et al (2007) Effects of intensive mariculture on sediment biochemistry. Ecol Appl 17:1366–1378CrossRefPubMedGoogle Scholar
  52. Pusceddu A, Dell’Anno A, Fabiano M, Danovaro R (2009) Quantity and bioavailability of sediment organic matter as complementary signatures of benthic trophic status. Mar Ecol Prog Ser 23:288–293Google Scholar
  53. Pyle RL (1996) The twilight zone. Nat Hist Mag 105:59–62Google Scholar
  54. Pyle RL (2000) Assessing undiscovered fish biodiversity on deep coral reefs using advanced self-contained diving technology. Mar Tech Soc J 34:82–91CrossRefGoogle Scholar
  55. Reed J, Pomponi S, Ginsburg R (2008) Zonation of mesophotic reefs in the Bahamas. Abstract 11th Coral Reef Symp, Fort Lauderdale, FloridaGoogle Scholar
  56. Roark EB, Guilderson TP, Dunbar RB et al (2006) Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals. Mar Ecol Prog Ser 327:1–14CrossRefGoogle Scholar
  57. Roark EB, Guilderson TP, Dunbar RB et al (2009) Extreme longevity in proteinaceous deep-sea corals. Proc Natl Acad Sci 106:5204–5208CrossRefPubMedGoogle Scholar
  58. Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547CrossRefPubMedGoogle Scholar
  59. Rossi L (1958) Primo rinvenimento di Gerardia savaglia (Bert) (Zoantharia) nei mari italiani (Golfo di Genova). Doriana 2(85): 8 ppGoogle Scholar
  60. Salas C (1996) Marine bivalves from off the Southern Iberian Peninsula collected by the Balgim and Fauna 1 expeditions. Haliotis 25:33–100Google Scholar
  61. Sanders HL (1968) Marine benthic diversity: a comparative study. Am Nat 102:243–282CrossRefGoogle Scholar
  62. Scinto A, Bertolino M, Calcinai B et al (2009) Role of a Paramuricea clavata forest in modifying the coralligenous assemblages. 1st Symposium sur le Coralligène et autre bio concrétions calcaires, Tabarka, pp 136–140Google Scholar
  63. Seinhorst JW (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4:67–69Google Scholar
  64. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  65. Shashar N, Kinane S, Jokiel PL (1996) Hydromechanical boundary layers over a coral reef. J Exp Mar Biol Ecol 199:17–28CrossRefGoogle Scholar
  66. Slattery M, Gochfeld D (2006) Ocean exploration and drug discovery in the twilight zone. Eos Trans AGU 87(52), Fall Meet. Suppl., Abstract OS42B-03Google Scholar
  67. Vallentyne R (1964) Biogeochemistry of organic matter—II. Thermal reaction kinetics and transformation products of amino compounds. Geochim Cosmochim Acta 28:157–188CrossRefGoogle Scholar
  68. Waller RG, Baco AR (2007) Reproductive morphology of three species of deep-water precious corals from the Hawaiian Archipelago: Gerardia sp., Corallium secundum and Corallium lauuense. Bull Mar Sci 81:533–542Google Scholar
  69. Warwick RM, Platt HM, Somerfield PJ (1998) Freeliving marine nematode. Part 111: British monhystenda. Synopses of the British fauna no. 53. Field Studies Council, ShrewsburyGoogle Scholar
  70. Wheeler AJ, Kozachenko M, Masson DG, Huvenne VAI (2008) Influence of benthic sediment transport on cold-water coral bank morphology and growth: the example of the Darwin Mounds, north-east Atlantic. Sedimentology. doi: 10.1111/j.1365-3091.2008.00970.x
  71. Zubay G (1988) Biochemistry, 2nd edn. MacMillian Publishing Company, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • C. Cerrano
    • 1
  • R. Danovaro
    • 2
  • C. Gambi
    • 2
  • A. Pusceddu
    • 2
  • A. Riva
    • 2
  • S. Schiaparelli
    • 1
  1. 1.Department for the Study of the Territory and its ResourcesUniversity of GenoaGenoaItaly
  2. 2.Department of Marine SciencePolytechnic University of MarcheAnconaItaly

Personalised recommendations