Advertisement

Biodiversity and Conservation

, 18:3861 | Cite as

New method and criteria for national assessments of threatened habitat types

  • Tytti KontulaEmail author
  • Anne Raunio
Original Paper

Abstract

Consistent information on threatened habitat types is needed for land use planning and for prioritizing conservation, management, and restoration actions. However, detailed background data for assessing extinction risks of habitat types exists only in few countries. We present a new, flexible procedure for assigning habitat types into Red List Categories similar to those used for species by the World Conservation Union (IUCN). The procedure allows variation in the character or scale of assessment units and it is applicable even with incomplete data. The assessment protocol consists of two primary criteria: the change in the quantity and the change in the quality of the habitat type. The criteria are analyzed by expert groups with a transparent and repeatable stepwise procedure. The quantitative and qualitative changes in habitat types over the last 50 years serve as a starting point for the assessment, and the status is adjusted by assessing sub-criteria that address earlier changes, predicted future change, and the overall commonness or rarity of the habitat type. We also report the main results of the first assessment of threatened habitat types in Finland, and illustrate the application of the criteria by two case studies.

Keywords

Conservation status Ecological communities Extinction risk Red List Threat categories Threatened biotopes Threatened habitats 

Notes

Acknowledgments

We are grateful to all those who participated in the assessment of threatened habitat types in Finland. We also thank K. Aapala, J. Pykälä and an anonymous referee for their constructive comments on the manuscript. The study was supported by the Ministry of the Environment and the Ministry of Agriculture and Forestry, and it was part of the MOSSE research program.

References

  1. Andren H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat. Oikos 71:355–366CrossRefGoogle Scholar
  2. Benson JS (2006) New South Wales vegetation classification and assessment: introduction – the classification, database, assessment of protected areas and threat status of plant communities. Cunninghamia 9:331–382Google Scholar
  3. Blab J, Riecken U, Ssymank A (1995) Proposal on a criteria system for a National Red Data Book of Biotopes. Landsc Ecol 10:41–50CrossRefGoogle Scholar
  4. Blake JG, Karr JR (1987) Breeding birds of isolated woodlots: area and habitat relationships. Ecology 68:1724–1734CrossRefGoogle Scholar
  5. Brown JH (1971) Species richness of boreal mammals living on the montane islands of the Great Basin. Am Nat 105:467–478CrossRefGoogle Scholar
  6. Cousins SAO, Eriksson O (2002) The influence of management history and habitat on plant species richness in a rural hemiboreal landscape, Sweden. Landsc Ecol 17:517–529CrossRefGoogle Scholar
  7. EPBC Act (1999) Environment protection and biodiversity conservation act. Commonwealth of AustraliaGoogle Scholar
  8. Essl F, Egger G, Ellmauer T (2002) Rote liste gefährdeter biotoptypen österreichs. Konzept. Umweltbundesamt GmbH, WienGoogle Scholar
  9. Eurola S, Hicks S, Kaakinen E (1984) Key to finnish mire types. In: Moore PD (ed) European mires. Academic Press, LondonGoogle Scholar
  10. Eurola S, Aapala K, Kokko A, Nironen M (1991) Mire type statistics in the bog and southern aapa mire areas of Finland (60–66°N). Ann Bot Fenn 28:15–36Google Scholar
  11. Fahrig L (1997) Relative effects of habitat loss and fragmentation on population extinction. J Wildl Manage 61:606–610Google Scholar
  12. Ferraz G, Russell GJ, Stouffer PC, Bierregaard RO, Pimm SL, Lovejoy TE (2003) Rates of species loss from Amazonian forest fragments. Proc Natl Acad Sci USA 100:14069–14073CrossRefPubMedGoogle Scholar
  13. Finnish Forest Research Institute (2008) National forest inventory (NFI). In: Metla, Finnish Forest Research Institute. http://www.metla.fi/ohjelma/vmi/info-en.htm. Cited 2 Jan 2009
  14. Franklin JF (1993) Preserving biodiversity: species, ecosystems, or landscapes? Ecol Appl 3:202–205CrossRefGoogle Scholar
  15. Fremstad E, Moen A (eds) (2001) Truete vegetasjonstyper i Norge. Norges teknisk-naturvitenskapelige universitet, Vitenskapsmuseet, TrondheimGoogle Scholar
  16. IUCN (1994) IUCN Red List categories. IUCN Species Survival Commission, Gland, SwitzerlandGoogle Scholar
  17. IUCN (2001) IUCN Red List categories and criteria: version 3.1. IUCN Species Survival Commission Gland, Switzerland and Cambridge, UKGoogle Scholar
  18. IUCN (2008) Guidelines for using the IUCN Red List categories and criteria: version 7.0. Standards and petitions working group for the IUCN species survival commissions biodiversity assessments sub-committee, Gland, SwitzerlandGoogle Scholar
  19. Kaakinen E, Aapala K, Kokko A (2008) The diversity and current condition of Finnish mires. In: Korhonen L, Korpela L, Sarkkola S (eds) Finland–Fenland. Research and sustainable utilisation of mires and peat. Suoseura & Maahenki, HelsinkiGoogle Scholar
  20. Keltikangas M, Laine J, Puttonen P, Seppälä K (1986) Vuosina 1930–1978 metsäojitetut suot: ojitusalueiden inventoinnin tuloksia. Acta Forestalia Fennica 193:1–94Google Scholar
  21. Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845CrossRefGoogle Scholar
  22. Luoto M, Heikkinen RK, Carter TR (2004) Loss of palsa mires in Europe and biological consequences. Environ Conserv 31:30–37CrossRefGoogle Scholar
  23. Master LL, Faber-Langendoen D, Bittman R, Hammerson GA, Heidel B, Ramsay L, Tomaino A (2007) NatureServe conservation status factors. NatureServe, ArlingtonGoogle Scholar
  24. McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15:320–331CrossRefGoogle Scholar
  25. Moyle PB (1996) Status of aquatic habitat types. In: Sierra Nevada Ecosystem Project: final report to Congress, vol II, Assessments and scientific basis for management options. Davis, CaliforniaGoogle Scholar
  26. Nicholson E, Keith DA, Wilcove DS (2009) Assessing the threat status of ecological communities. Conserv Biol 23:259–274CrossRefPubMedGoogle Scholar
  27. Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4:355–364CrossRefGoogle Scholar
  28. Paal J (1998) Rare and threatened plant communities of Estonia. Biodivers Conserv 7:1027–1049CrossRefGoogle Scholar
  29. Paasovaara P (1990) Kuusamon suot. Licensiate thesis, University of OuluGoogle Scholar
  30. Palviainen M, Finér L, Laurén A, Mannerkoski H, Piirainen S, Starr M (2007) Development of ground vegetation biomass and nutrient pools in a clear-cut disc-plowed boreal forest. Plant Soil 297:43–52CrossRefGoogle Scholar
  31. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefPubMedGoogle Scholar
  32. Pykälä J (2004) Cattle grazing increases plant species richness of most species trait groups in mesic semi-natural grasslands. Plant Ecol 175:217–226CrossRefGoogle Scholar
  33. Rassi P (ed) (1993) Suomen kovakuoriaisten (Coleoptera) frekvenssipisteet 1.1.1960–1.1.1990. WWF, HelsinkiGoogle Scholar
  34. Rassi P, Alanen A, Kanerva T, Mannerkoski I (eds) (2001) Suomen lajien uhanalaisuus 2000 (The 2000 Red List of Finnish Species). Ministry of the Environment & Finnish Environment Institute, HelsinkiGoogle Scholar
  35. Raunio A, Schulman A, Kontula T (eds) (2008) Suomen luontotyyppien uhanalaisuus (Assessment of threatened habitat types in Finland). Finnish Environment Institute, HelsinkiGoogle Scholar
  36. Regan TJ, Master LL, Hammerson GA (2004) Capturing expert knowledge for threatened species assessments: a case study using NatureServe conservation status ranks. Acta Oecologica 26:95–107CrossRefGoogle Scholar
  37. Rodríguez JP, Balch JK, Rodríguez-Clark KM (2007) Assessing extinction risk in the absence of species-level data: quantitative criteria for terrestrial ecosystems. Biodivers Conserv 16:183–209CrossRefGoogle Scholar
  38. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60CrossRefPubMedGoogle Scholar
  39. Rowe SJ, Scotter GW (1973) Fire in the boreal forest. Quat Res 3:444–464CrossRefGoogle Scholar
  40. Rush C, Rajkumar R (2001) Expert judgement in cost estimating: modelling the reasoning process. Concurr Eng 9:271–284CrossRefGoogle Scholar
  41. Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Nature DivisionFinnish Environment Institute (SYKE)HelsinkiFinland

Personalised recommendations