Biodiversity and Conservation

, 18:3185

Biodiversity monitoring: some proposals to adequately study species’ responses to climate change

  • Virginie Lepetz
  • Manuel Massot
  • Dirk S. Schmeller
  • Jean Clobert
Original Paper

Abstract

Climate change affects all levels of biology and is a major threat for biodiversity. Hence, it is fundamental to run biodiversity monitoring programs to understand the effects of climate change on the biota and to be able to adjust management and conservation accordingly. So far, however, very few existing monitoring programs allow for the detection of climate change effects, as shown by a survey undertaken by the European project EuMon. Despite this shortcoming, several methods exist which allow to make inferences from existing data by integrating data across different monitoring programs: correlative analyses, meta-analyses and models. In addition, experiments are thought to be useful tools to understand the effects of climate change on plants and animals. Here, we evaluate the utility of these four main approaches. All these methods allow to evaluate long term effects of climate change and make predictions of species’ future development, but they are arguable. We list and compare their benefits and inconveniences, which can lead to uncertainties in the extrapolation of species responses to global climate change. Individual characteristics and population parameters have to be more frequently monitored. The potential evolution of a species should be also modelled, to extrapolate results across spatial and temporal scales as well as to analyse the combined effects of different climatic and biotic factors, including intra but also interspecific relationships. We conclude that a combination of methodologies would be the most promising tool for the assessment of biological responses to climate change, and we provide some thoughts about how to do so. Particularly, we encourage long-term studies along natural gradients (altitudinal or latitudinal) on the same species/habitats to be able to extrapolate to large geographic scales, and to have more complete data sets, necessary to understand the mechanisms of responses. Such data may provide a more accurate base for simulations across spatial and temporal scales, especially if they are publicly available in a common database. These recommendations could allow the adaptation of species management and the development of conservation tools to climate change which threatens species.

Keywords

Biodiversity Climate change Correlative analysis Experiment Management meta-analysis Model Spatial scale Time scale 

References

  1. Aebischer NJ (1990) Assessing pesticide effects on non-target invertebrates using long-term monitoring and time-series modeling. Funct Ecol 4:369–373. doi:10.2307/2389598 CrossRefGoogle Scholar
  2. Aerts R, Cornelissen JHC, Dorrepaal E (2006) Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecol 182:65–77Google Scholar
  3. Ahola MP, Laaksonen T, Eeva T et al (2007) Climate change can alter competitive relationships between resident and migratory birds. J Anim Ecol 76:1045–1052. doi:10.1111/j.1365-2656.2007.01294.x PubMedCrossRefGoogle Scholar
  4. Andalo C, Beaulieu J, Bousquet J (2005) The impact of climate change on growth of local white spruce populations in Québec, Canada. For Ecol Manage 205:169–182. doi:10.1016/j.foreco.2004.10.045 CrossRefGoogle Scholar
  5. Araújo MB, Pearson RG, Thuillers W et al (2005) Validation of species–climate impact models under climate change. Glob Chang Biol 11:1504–1513. doi:10.1111/j.1365-2486.2005.01000.x CrossRefGoogle Scholar
  6. Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728. doi:10.1111/j.1365-2699.2006.01482.x CrossRefGoogle Scholar
  7. Ashauer R, Boxall ABA, Brown CD (2007) Simulating toxicity of carbaryl to Gammarus pulex after sequential pulsed exposure. Environ Sci Technol 41:5528–5534. doi:10.1021/es062977v PubMedCrossRefGoogle Scholar
  8. Bakkenes M, Alkemade JRM, Ihle F et al (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob Chang Biol 8:390–407. doi:10.1046/j.1354-1013.2001.00467.x CrossRefGoogle Scholar
  9. Balanyá J, Oller JM, Huey RB et al (2006) Global genetic change tracks global climate warming in Drosophila subobscura. Science 313:1773–1775. doi:10.1126/science.1131002 PubMedCrossRefGoogle Scholar
  10. Barbraud C, Weimerskirch H (2001) Emperor penguins and climate change. Nature 411:183–186. doi:10.1038/35075554 PubMedCrossRefGoogle Scholar
  11. Barbraud C, Weimerskirch H (2006) Antarctic birds breed later in response to climate change. Proc Natl Acad Sci USA 103:6248–6251. doi:10.1073/pnas.0510397103 PubMedCrossRefGoogle Scholar
  12. Beebee TJC (2002) Amphibian phenology and climate change. Conserv Biol 16:1454–1455. doi:10.1046/j.1523-1739.2002.02102.x CrossRefGoogle Scholar
  13. Bosch J, Carrascal LM, Duran L et al (2007) Climate change and outbreaks of amphibian chytridiomycosis in a montane area of central Spain; is there a link? Proc R Soc B Biol Sci 274:253–260CrossRefGoogle Scholar
  14. Both C (2007) Comment on “rapid advance of spring arrival dates in long-distance migratory birds”. Science 315:598b. doi:10.1126/science.1136148 CrossRefGoogle Scholar
  15. Bradley DC, Ormerod SJ (2002) Long-term effects of catchment liming on invertebrates in upland streams. Freshw Biol 46:161–171. doi:10.1046/j.1365-2427.2002.00770.x CrossRefGoogle Scholar
  16. Briones MJI, Ineson P, Heinemeyer A (2007) Predicting potential impacts of climate change on the geographical distribution of enchytraeids: a meta-analysis approach. Glob Chang Biol 13:2252–2269. doi:10.1111/j.1365-2486.2007.01434.x CrossRefGoogle Scholar
  17. Bruelheide H (2003) Translocation of a montane meadow to simulate the potential impact of climate change. Appl Veg Sci 6:23–34CrossRefGoogle Scholar
  18. Burns CE, Johnston KM, Schmitz OJ (2003) Global climate change and mammalian species diversity in US national parks. Proc Natl Acad Sci USA 100:11474–11477. doi:10.1073/pnas.1635115100 PubMedCrossRefGoogle Scholar
  19. Chamaillé-Jammes S, Massot M, Aragon P et al (2006) Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Glob Chang Biol 12:392–402. doi:10.1111/j.1365-2486.2005.01088.x CrossRefGoogle Scholar
  20. Cross MS, Harte J (2007) Compensatory responses to loss of warming-sensitive plant species. Ecology 88:740–748. doi:10.1890/06-1029 PubMedCrossRefGoogle Scholar
  21. Danielsen F, Burgess ND, Balmford A (2005) Monitoring matters: examining the potential of locally-based approaches. Biodivers Conserv 14:2507–2542. doi:10.1007/s10531-005-8375-0 CrossRefGoogle Scholar
  22. Davis AJ, Jenkinson LS, Lawton JH et al (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786. doi:10.1038/35842 PubMedCrossRefGoogle Scholar
  23. Delbart N, Picard G, Le Toans T et al (2008) Spring phenology in boreal Eurasia over a nearly century time scale. Glob Chang Biol 14:603–614. doi:10.1111/j.1365-2486.2007.01505.x CrossRefGoogle Scholar
  24. Ditto AM, Frey JK (2007) Effects of ecogeographic variables on genetic variation in montane mammals: implications for conservation in a global warming scenario. J Biogeogr 34:1136–1149. doi:10.1111/j.1365-2699.2007.01700.x CrossRefGoogle Scholar
  25. Etterson JR (2004) Evolutionary potential of Chamaecrista fasciculata in relation to climate change. I. Clinal patterns of selection along an environmental gradient in the great plains. Evol Int J Org Evol 58:1446–1458Google Scholar
  26. EuMon (2008) A comprehensive database on monitoring practices in Europe. http://eumon.ckff.si. Cited 12 Nov 2008
  27. Figuerola J (2007) Climate and dispersal: black-winged stilts disperse further in dry springs. PLoS One 2:e539. doi:10.1371/journal.pone.0000539 PubMedCrossRefGoogle Scholar
  28. Forcada J, Trathan PN, Reid K et al (2006) Contrasting population changes in sympatric penguin species in association with climate warming. Glob Chang Biol 12:411–423. doi:10.1111/j.1365-2486.2006.01108.x CrossRefGoogle Scholar
  29. Gilman SE, Wethey DS, Helmuth B (2006) Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales. Proc Natl Acad Sci USA 103:9560–9565. doi:10.1073/pnas.0510992103 PubMedCrossRefGoogle Scholar
  30. Glass GV (1976) Primary, secondary, and meta-analysis of research. Educ Res 5:3–8Google Scholar
  31. Griebeler EM, Seitz A (2007) Effects of increasing temperatures on population dynamics of the zebra mussel Dreissena polymorpha: implications from an individual-based model. Oecologia 151:530–543. doi:10.1007/s00442-006-0591-0 PubMedCrossRefGoogle Scholar
  32. Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University Press, Princeton, p 428Google Scholar
  33. Grosbois V, Gimenez O, Gaillard J-M, Pradel R, Barbraud C, Clobert J, Møller AP, Weimerskirch H (2008) Assessing the impact of climate change variation on survival in populations. Biol Rev Camb Philos Soc 83:357–399. doi:10.1111/j.1469-185X.2008.00047.x PubMedCrossRefGoogle Scholar
  34. Gurevitch J, Curtis P, Jones M (2001) Meta-analysis in ecology. Adv Ecol Res 32:199–247. doi:10.1016/S0065-2504(01)32013-5 CrossRefGoogle Scholar
  35. Halpern BS, Cottenie K (2007) Little evidence for climate effects on local-scale structure and dynamics of California kelp forest communities. Glob Chang Biol 13:236–251. doi:10.1111/j.1365-2486.2006.01243.x CrossRefGoogle Scholar
  36. Harker R, Shreeve T (2008) How accurate are single site transect data for monitoring butterfly trends? Spatial and temporal issues identified in monitoring Lasiommata megera. J Insect Conserv 12:125–133. doi:10.1007/s10841-007-9068-7 CrossRefGoogle Scholar
  37. Hassall C, Thompson DJ, French GC et al (2007) Historical changes in the phenology of British Odonata are related to climate. Glob Chang Biol 13:933–941. doi:10.1111/j.1365-2486.2007.01318.x CrossRefGoogle Scholar
  38. Henle K, Davies KF, Kleyer M et al (2004a) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251. doi:10.1023/B:BIOC.0000004319.91643.9e CrossRefGoogle Scholar
  39. Henle K, Sarre S, Wiegand K (2004b) The role of density regulation in extinction processes and population viability analysis. Biodivers Conserv 13:9–52. doi:10.1023/B:BIOC.0000004312.41575.83 CrossRefGoogle Scholar
  40. Henry P-Y, Lengyel S, Nowicki P et al (2008) Integrating ongoing biodiversity monitoring: potential benefits and methods. Biodivers Conserv 17:3357–3382. doi:10.1007/s10531-008-9417-1 CrossRefGoogle Scholar
  41. Hill JK, Thomas CD, Fox R et al (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc R Soc Lond B Biol Sci 269:2163–2171CrossRefGoogle Scholar
  42. Hollister RD, Webber PJ, Tweedie C (2005) The response of Alaskan arctic tundra to experimental warming: differences between short- and long-term responses. Glob Chang Biol 11:525–536. doi:10.1111/j.1365-2486.2005.00926.x CrossRefGoogle Scholar
  43. Holzapfel AM, Vinebrooke RD (2005) Environmental warming increases invasion potential of alpine lake communities by imported species. Glob Chang Biol 11:2009–2015Google Scholar
  44. IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen M, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  45. Jennions MD, Møller AP (2002) Publication bias in ecology and evolution: an empirical assessment using the ‘trim and fill’ method. Biol Rev Camb Philos Soc 77:211–222. doi:10.1017/S1464793101005875 PubMedCrossRefGoogle Scholar
  46. Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5:e157. doi:10.1371/journal.pbio.0050157 PubMedCrossRefGoogle Scholar
  47. Jiguet F, Gadot AS, Julliard R et al (2007) Climate envelope, life history traits and the resilience of birds facing global change. Glob Chang Biol 13:1672–1684. doi:10.1111/j.1365-2486.2007.01386.x CrossRefGoogle Scholar
  48. Kerr RA (2007a) Global warming: how urgent is climate change? Science 318:1230–1231. doi:10.1126/science.318.5854.1230 PubMedCrossRefGoogle Scholar
  49. Kerr RA (2007b) Climate change: global warming is changing the world. Science 316:188–190. doi:10.1126/science.316.5822.188 PubMedCrossRefGoogle Scholar
  50. Klanderud K, Totland O (2007) The relative role of dispersal and local interactions for alpine plant community diversity under simulated climate warming. Oikos 116:1279–1288. doi:10.1111/j.0030-1299.2007.15906.x CrossRefGoogle Scholar
  51. Klein JA, Harte J, Zhao X-Q (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7:1170–1179. doi:10.1111/j.1461-0248.2004.00677.x CrossRefGoogle Scholar
  52. Koh LP, Dunn RR, Sodhi NS et al (2004) Species coextinctions and the biodiversity crisis. Science 305:1632–1634. doi:10.1126/science.1101101 PubMedCrossRefGoogle Scholar
  53. Lei X, Peng C, Tian D et al (2007) Meta-analysis and its application in global change research. Chin Sci Bull 52:289–302. doi:10.1007/s11434-007-0046-y CrossRefGoogle Scholar
  54. Lengyel S, Kobler A, Kutnar L et al (2008) A review and a framework for the integration of biodiversity monitoring at the habitat level. Biodivers Conserv 17:3341–3356. doi:10.1007/s10531-008-9359-7 CrossRefGoogle Scholar
  55. Levinsky I, Skov F, Svenning J-C et al (2007) Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodivers Conserv 16:3803–3816. doi:10.1007/s10531-007-9181-7 CrossRefGoogle Scholar
  56. Logan JA, Allen JC (1992) Nonlinear dynamics and chaos in insect populations. Annu Rev Entomol 37:455–477. doi:10.1146/annurev.en.37.010192.002323 CrossRefGoogle Scholar
  57. Lorenzon P, Clobert J, Massot M (2001) The contribution of phenotypic plasticity to adaptation in Lacerta vivipara. Evol Int J Org Evol 55:392–404Google Scholar
  58. Lovejoy TE, Hannah L (eds) (2005) Climate change and biodiversity. Yale University Press, New Haven, pp 387–396Google Scholar
  59. Mac Nally R (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv 11:1397–1401. doi:10.1023/A:1016250716679 CrossRefGoogle Scholar
  60. Macmynowski DP, Root TL, Ballard G et al (2007) Changes in spring arrival of nearctic-neotropical migrants attributed to multiscalar climate. Glob Chang Biol 13:2239–2251. doi:10.1111/j.1365-2486.2007.01448.x CrossRefGoogle Scholar
  61. Malcolm JR, Markham A, Neilson RP et al (2005) Case study: migration of vegetation types in a greenhouse world. In: Lovejoy TE, Hannah L (eds) Climate change and biodiversity. Yale University Press, New Haven, pp 252–255Google Scholar
  62. Maschinski J, Baggs JE, Quintana-Ascencio PF et al (2006) Using population viability analysis to predict the effects of climate change on the extinction risk of an endangered limestone endemic shrub, arizona cliffrose. Conserv Biol 20:218–228. doi:10.1111/j.1523-1739.2006.00272.x PubMedCrossRefGoogle Scholar
  63. Massol F, David P, Gerdeaux D et al (2007) The influence of trophic status and large-scale climatic change on the structure of fish communities in Perialpine lakes. J Anim Ecol 76:538–551. doi:10.1111/j.1365-2656.2007.01226.x PubMedCrossRefGoogle Scholar
  64. Massot M, Clobert J, Ferrière R (2008) Climate warming, dispersal inhibition and extinction risk. Glob Chang Biol 14:461–469. doi:10.1111/j.1365-2486.2007.01514.x CrossRefGoogle Scholar
  65. Menzel A, Sparks TH, Estrella N et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976. doi:10.1111/j.1365-2486.2006.01193.x CrossRefGoogle Scholar
  66. Meynecke J-O (2004) Effects of global climate change on geographic distributions of vertebrates in North Queensland. Ecol Modell 174:347–357. doi:10.1016/j.ecolmodel.2003.07.012 CrossRefGoogle Scholar
  67. Moen J, Aune K, Edenius L et al (2004) Potential effects of climate change on treeline position in the Swedish mountains. Ecol Soc 9:16Google Scholar
  68. Møller AP, Flensted-Jensen E, Mardal W (2006) Dispersal and climate change: a case study of the Arctic tern Sterna paradisaea. Glob Chang Biol 12:2005–2013. doi:10.1111/j.1365-2486.2006.01216.x CrossRefGoogle Scholar
  69. Mora C, Metzger R, Rollo A et al (2007) Experimental simulations about the effects of overexploitation and habitat fragmentation on populations facing environmental warming. Proc R Soc B Biol Sci 274:1023–1028. doi:10.1098/rspb.2006.0338 CrossRefGoogle Scholar
  70. Mouritsen KN, Tompkins DM, Poulin R (2005) Climate warming may cause a parasite-induced collapse in coastal amphipod populations. Oecologia 146:476–483. doi:10.1007/s00442-005-0223-0 PubMedCrossRefGoogle Scholar
  71. Musolin DL (2007) Insects in a warmer world: ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Glob Chang Biol 13:1565–1585. doi:10.1111/j.1365-2486.2007.01395.x CrossRefGoogle Scholar
  72. Normand S, Svenning J-C, Skov F (2007) National and European perspectives on climate change sensitivity of the habitats directive characteristic plant species. J Nat Conserv 15:41–53. doi:10.1016/j.jnc.2006.09.001 CrossRefGoogle Scholar
  73. Nunes MFC, Galetti M, Marsden S et al (2007) Are large-scale distributional shifts of the blue-winged macaw (Primolius maracana) related to climate change? J Biogeogr 34:816–827. doi:10.1111/j.1365-2699.2006.01663.x CrossRefGoogle Scholar
  74. Núñez-Olivera E, Martínez-Abaigar J, Tomás R et al (2004) Influence of temperature on the effects of artificially enhanced UV-B radiation on aquatic bryophytes under laboratory conditions. Photosynthetica 42:201–212. doi:10.1023/B:PHOT.0000040591.74037.f1 CrossRefGoogle Scholar
  75. Palmer RA (1999) Detecting publication bias in meta-analyses: a case study of fluctuating asymmetry and sexual selection. Am Nat 154:220–233. doi:10.1086/303223 CrossRefGoogle Scholar
  76. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  77. Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Chang Biol 13:1860–1872. doi:10.1111/j.1365-2486.2007.01404.x CrossRefGoogle Scholar
  78. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286 PubMedCrossRefGoogle Scholar
  79. Parton WJ, Morgan JA, Wang G et al (2007) Projected ecosystem impact of the prairie heating and CO2 enrichment experiment. New Phytol 174:823–834. doi:10.1111/j.1469-8137.2007.02052.x PubMedCrossRefGoogle Scholar
  80. Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615. doi:10.1038/19297 CrossRefGoogle Scholar
  81. Richardson AJ, Schoeman DS (2004) Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305:1609–1612. doi:10.1126/science.1100958 PubMedCrossRefGoogle Scholar
  82. Ricker M, Gutiérrez-García G, Daly DC (2007) Modeling long-term tree growth curves in response to warming climate: test cases from a subtropical mountain forest and a tropical rainforest in Mexico. Can J For Res 37:977–989. doi:10.1139/X06-304 CrossRefGoogle Scholar
  83. Root TL, Price JT, Hall KR et al (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. doi:10.1038/nature01333 PubMedCrossRefGoogle Scholar
  84. Roy BA, Gusewell S, Harte J (2004) Response of plant pathogens and herbivores to a warming experiment. Ecology 85:2570–2581CrossRefGoogle Scholar
  85. Saether B, Tufto J, Engen S et al (2000) Population dynamical consequences of climate change for a small temperate songbird. Science 287:854–856. doi:10.1126/science.287.5454.854 PubMedCrossRefGoogle Scholar
  86. Santos M (2007) Evolution of total net fitness in thermal lines: Drosophila subobscura likes it ‘warm’. J Evol Biol 20:2361–2370. doi:10.1111/j.1420-9101.2007.01408.x PubMedCrossRefGoogle Scholar
  87. Schmeller DS, Gruber B, Bauch B et al (2006) EuMon—Arten- und lebensraum-monitoring in Europa. Naturschutz Landschaftsplanung 39:384–385Google Scholar
  88. Schmeller DS, Henry P-Y, Julliard R et al (2009) Advantages of volunteer-based biodiversity monitoring in Europe. Conserv Biol 23:307–316. doi:10.1111/j.1523-1739.2008.01125.x PubMedCrossRefGoogle Scholar
  89. Schtickzelle N, Baguette M (2004) Metapopulation viability analysis of the bog fritillary bitterfly using RAMAS/GIS. Oikos 104:277–290. doi:10.1111/j.0030-1299.2004.12825.x CrossRefGoogle Scholar
  90. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern hemisphere. Glob Chang Biol 12:343–351. doi:10.1111/j.1365-2486.2005.01097.x CrossRefGoogle Scholar
  91. Shaw MR, Harte J (2001) Control of litter decomposition in a subalpine meadow-sagebrush steppe ecotone under climate change. Ecol Appl 11:1206–1223Google Scholar
  92. Sherry RA, Zhou XH, Gu SL et al (2007) Divergence of reproductive phenology under climate warming. Proc Natl Acad Sci USA 104:198–202. doi:10.1073/pnas.0605642104 PubMedCrossRefGoogle Scholar
  93. Sjögersten S, Wookey PA (2004) Decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions. Plant Soil 262:215–227. doi:10.1023/B:PLSO.0000037044.63113.fe CrossRefGoogle Scholar
  94. Skelly DK, Joseph LN, Possingham HP et al (2007) Evolutionary responses to climate change. Conserv Biol 21:1353–1355. doi:10.1111/j.1523-1739.2007.00764.x PubMedCrossRefGoogle Scholar
  95. Stenstrom A, Jonsdottir IS (2004) Effects of simulated climate change on phenology and life history traits in Carex bigelowii. Nord J Bot 24:355–371. doi:10.1111/j.1756-1051.2004.tb00850.x CrossRefGoogle Scholar
  96. Strayer DL (1999) Statistical power of presence–absence data to detect population declines. Conserv Biol 13:1034–1038. doi:10.1046/j.1523-1739.1999.98143.x CrossRefGoogle Scholar
  97. Svenning J-C, Skov F (2006) Potential impact of climate change on the northern nemoral forest herb flora of Europe. Biodivers Conserv 15:3341–3356. doi:10.1007/s10531-005-1345-8 CrossRefGoogle Scholar
  98. Tews J, Ferguson MAD, Fahrig L (2007) Potential net effects of climate change on high arctic peary caribou: lessons from a spatially explicit simulation model. Ecol Modell 207:85–98. doi:10.1016/j.ecolmodel.2007.04.011 CrossRefGoogle Scholar
  99. Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148. doi:10.1038/nature02121 PubMedCrossRefGoogle Scholar
  100. Umina PA, Weeks AR, Kearney MR et al (2005) A rapid shift in a classic clinal pattern in Drosophila reflecting climate change. Science 308:691–693. doi:10.1126/science.1109523 PubMedCrossRefGoogle Scholar
  101. Van Swaay CAM, Plate CL, Van Strien A (2002) Monitoring butterflies in the Netherlands: how to get unbiased indices. Proceedings of the section experimental and applied entomology of the Netherlands entomological society, vol 13, pp 21–27Google Scholar
  102. Verburg P, Hecky RE, Kling H (2003) Ecological consequences of a century of warming in Lake Tanganyika. Science 301:505–507. doi:10.1126/science.1084846 PubMedCrossRefGoogle Scholar
  103. Vilchis LI, Tegner MJ, Moore JD et al (2005) Ocean warming effects on growth, reproduction, and survivorship of southern california abalone. Ecol Appl 15:469–480. doi:10.1890/03-5326 CrossRefGoogle Scholar
  104. Virkkala R, Heikkinen RK, Leikola N et al (2008) Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biol Conserv 141:1343–1353. doi:10.1016/j.biocon.2008.03.007 CrossRefGoogle Scholar
  105. Walker G (2007) A world melting from the top down. Nature 446:718–721. doi:10.1038/446718a PubMedCrossRefGoogle Scholar
  106. Walther G-R, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a PubMedCrossRefGoogle Scholar
  107. Whitfield SM, Bell KE, Philippi T et al (2007) Amphibian and reptile declines over 35 years at La Selva, Costa Rica. Proc Natl Acad Sci USA 104:8352–8356PubMedCrossRefGoogle Scholar
  108. Wiedermann MM, Nordin A, Gunnarsson U et al (2007) Global change shifts vegetation and plant–parasite interactions in a boreal mire. Ecology 88:454–464. doi:10.1890/05-1823 PubMedCrossRefGoogle Scholar
  109. Wilson RJ, Gutierrez D, Gutierrez J et al (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob Chang Biol 13:1873–1887. doi:10.1111/j.1365-2486.2007.01418.x CrossRefGoogle Scholar
  110. Winkler DW, Dunn P, McCulloch C (2002) Predicting the effects of climate change on avian life-history traits. Proc Natl Acad Sci USA 99:13595–13599. doi:10.1073/pnas.212251999 PubMedCrossRefGoogle Scholar
  111. Wuethrich B (2000) How climate change alters rhythms of the wild. Science 287:793–795. doi:10.1126/science.287.5454.793 PubMedCrossRefGoogle Scholar
  112. Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16:446–453. doi:10.1016/S0169-5347(01)02205-4 CrossRefGoogle Scholar
  113. Zavaleta ES (2006) Shrub establishment under experimental global changes in a California grassland. Plant Ecol 184:53–63. doi:10.1007/s11258-005-9051-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Virginie Lepetz
    • 1
  • Manuel Massot
    • 2
    • 3
    • 4
    • 5
  • Dirk S. Schmeller
    • 1
  • Jean Clobert
    • 1
  1. 1.Station d’Ecologie Expérimentale du CNRS à Moulis, USR 2936Saint GironsFrance
  2. 2.UPMC University-Paris 06, UMR 7625 Écologie & ÉvolutionParisFrance
  3. 3.CNRS, UMR 7625 Écologie & ÉvolutionParisFrance
  4. 4.École Normale Supérieure, UMR 7625 Écologie & ÉvolutionParisFrance
  5. 5.Laboratoire Ecologie-EvolutionUniversité Pierre et Marie Curie-Paris 6, CNRS UMR 7625Paris cedex 05France

Personalised recommendations