Biodiversity and Conservation

, Volume 18, Issue 11, pp 3017–3041

Structure of vegetation patches in northwestern Patagonia, Argentina

Original Paper


Vegetation of arid and semiarid environments has in general a patchy distribution. Our objective was to (a) determine several qualitative and quantitative analytical characteristics of vegetation patches in an arid zone of Patagonia, Argentina, and (b) investigate relationships between them. Annual precipitation in this area was 200 mm during 1999–2005. Eight transects involving ten patches each were studied within a 15 × 15 km area. Mean (±1 SE) values (n = 80) in the vegetation patches were 315 ± 25 and 207 ± 16 cm for the greatest and lowest patch diameter, respectively; 23 ± 2 cm for mound height; 113 ± 12 cm for maximum vegetation height; and 170 ± 18 cm and 58 ± 2% for distance to the next vegetation patch and vegetation patch cover within a transect, respectively. Correlations between greatest and lowest diameters, mound height, maximum plant height and distance to the closest vegetation patch were all significant (P < 0.01; n = 80). In all vegetation patches, the greatest and lowest frequencies were found for the grass Stipa spp. (71.2%) and the shrub Grindelia chiloensis (Cornel.) Cabrera (12.5%). Stipa spp. and the shrub Atriplex lampa (Moq.) D. Dietr. showed the highest simultaneous frequency (50%). A reasonable association among species (>45%) was found for Stipa spp., Atriplex lampa and the shrubs Larrea divaricata Cav., Lycium chilense Miers ex Bertero and Junellia ligustrina (Lag.) Moldenke. Larrea divaricata and Atriplex lampa contributed more than 84% of the total patch standing crop (5,777 ± 435 g). Average patch size and specific diversity were 5.93 ± 0.33 m2 and 1.31 ± 0.11, respectively. Aboveground standing crop of the two dominant shrubs decreased as plant species diversity increased (P < 0.05). Conservation of vegetation patches is crucial to prevent increased soil erosion and desertification in the study ecological system.


Arid and semiarid lands Perennial grasses and shrubs Qualitative and quantitative analytical plant characteristics Regression analysis 


  1. Aarssen LW, Turkington R (1985) Vegetation dynamics and neighbor associations in pasture-community evolution. J Ecol 73:585–603. doi:10.2307/2260496 CrossRefGoogle Scholar
  2. Aguiar MR, Sala OE (1997) Seed distribution constrains the dynamics of the Patagonian steppe. Ecology 78:93–100Google Scholar
  3. Ares JO, Beeskow AM, Bertiller MB, Rostagno CM, Irisarri MP, Anchorena J, Defossé GE, Merino CA (1990) Structural and dynamic characteristics of overgrazed grasslands of northern Patagonia. In: Breymeyer A (ed) Managed grasslands: regional studies. Elsevier, Amsterdam, pp 149–175Google Scholar
  4. Barbour MG (1969) Age and space distribution of the desert shrub Larrea divaricata. Ecology 50(4):679–685. doi:10.2307/1936259 CrossRefGoogle Scholar
  5. Basanta M, Díaz Vizcaíno E, Casal M, Morey M (1989) Diversity measurements in shrubland communities of Galicia (NW Spain). Vegetatio 82:105–112. doi:10.1007/BF00045024 CrossRefGoogle Scholar
  6. Bates JD, Miller RF, Svejcar TJ (2000) Understory dynamics in cut and uncut western juniper woodlands. J Range Manag 53:119–126. doi:10.2307/4003402 CrossRefGoogle Scholar
  7. Bertiller MB, Bisigato AJ, Carrera AC, del Valle HF (2004) Estructura de la vegetación y funcionamiento de los ecosistemas del Monte chubutense. Bol Soc Arg Bot 39:139–158Google Scholar
  8. Bisigato AJ, Bertiller MB (1997) Grazing effects on patchy dryland vegetation in northern Patagonia. J Arid Environ 36:639–653. doi:10.1006/jare.1996.0247 CrossRefGoogle Scholar
  9. Black CA, Evans DD, Ensminger LE, White JL, Clark FE (1965) Methods of soil analysis. Part 1. Physical and mineralogical properties including statistics of measurement and sampling. American Society of Agronomy No. 9. Inc. Publisher, MadisonGoogle Scholar
  10. Bonvissuto GL (2006) Establecimiento de plántulas de gramíneas y arbustos dentro y entre isletas de vegetación en el Monte Austral Neuquino. Doctoral thesis, Universidad Nacional del Sur, Bahía BlancaGoogle Scholar
  11. Bonvissuto GL, Busso CA (2006) Ascenso hidráulico en y entre isletas de vegetación en la zona árida de Argentina. Phyton Int. J Exp Bot 75:55–70Google Scholar
  12. Bonvissuto GL, Busso CA (2007a) Seed rain in and between vegetation patches in arid Patagonia, Argentina. Phyton Int. J Exp Bot 76:47–59Google Scholar
  13. Bonvissuto GL, Busso CA (2007b) Germination of grasses and shrubs under various water stress and temperature conditions. Phyton Int. J Exp Bot 76:119–131Google Scholar
  14. Bozzo JA, Beasom SL, Fulbright TF (1992) Vegetation responses to two brush management practices in south Texas. J Range Manag 45:170–175. doi:10.2307/4002778 CrossRefGoogle Scholar
  15. Brisson J, Reynolds JF (1994) The effect of neighbors on root distribution in a creosotebush (Larrea tridentata) population. Ecology 75:1693–1702. doi:10.2307/1939629 CrossRefGoogle Scholar
  16. Burkhardt JW, Tisdale EW (1969) Nature and successional status of western juniper vegetation in Idaho. J Range Manag 22:264–270. doi:10.2307/3895930 CrossRefGoogle Scholar
  17. Busso CA (1997) Towards an increased and sustainable production in semiarid rangelands of Central Argentina: two decades of research. J Arid Environ 36:197–210. doi:10.1006/jare.1996.0205 CrossRefGoogle Scholar
  18. Bustos JC (1995) El efecto del clima en los ovinos. II. Uso de cortinas de arbustos para atenuar la mortandad perinatal de corderos. Presencia 35:5–8Google Scholar
  19. Cabrera AL (1971) Fitogeografía de la República Argentina. Bol Soc Arg Bot 14(1–2):1–42Google Scholar
  20. Canfield R (1941) Application of the line interception method in sampling range vegetation. J For 39:388–394Google Scholar
  21. Carter MR (1993) Soil sampling and methods of analysis. Canadian Society of Soil Science, Lewis Publishers, Boca RatonGoogle Scholar
  22. Cecchi GA (2000) Relación entre la textura y salinidad de la superficie del suelo y la cobertura herbácea en islas de vegetación del monte rionegrino. In: Proceedings of the XVIIº Congreso Argentino de Ciencias.del Suelo. Mar del Plata, ArgentinaGoogle Scholar
  23. Chambers JC, McMahon JA (1994) A day in the life of a seed: movements and fates of seeds and their implications for natural and managed systems. Annu Rev Ecol Syst 25:263–292. doi:10.1146/ CrossRefGoogle Scholar
  24. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. doi:10.1126/science.199.4335.1302 PubMedCrossRefGoogle Scholar
  25. Defossé GE, Bertiller MB, Robberecht R (1997) Effects of topography, soil moisture, wind, and grazing on Festuca seedlings in a Patagonian grassland. J Veg Sci 8:677–684. doi:10.2307/3237372 CrossRefGoogle Scholar
  26. Erickson HE, Soto P, Jonson DW, Roath B, Hunsaker C (2005) Effects of vegetation patches on soil nutrient pools and fluxes within a mixed-conifer forest. For Sci 51:211–220Google Scholar
  27. Ferrer JA, Irisarri JA (1989) Suelos. Plano Nº 25. In Estudio Regional de Suelos. Relevamiento y Prioritación de Áreas con Posibilidades de Riego. Expte. Nº 181. Consejo Federal de Inversión. Dirección de Cooperación Técnica. Área de Infraestructura Hídrica. Secretaría de Estado del Copade Pcia. NeuquénGoogle Scholar
  28. Frangi JL (1978) Ecología de la Vegetación. Manual de Trabajos Prácticos. Universidad Nacional de La PlataGoogle Scholar
  29. Fryrear DW, Stubbendieck J, McCully WG (1973) Grass seedling response to wind and windblown sand. Crop Sci 13:622–625CrossRefGoogle Scholar
  30. Fulbright TE (1991) Why does brush increase? In: Welch TG (ed) Proceedings of brush management symposium; May 1991, Texas A&M University, College Station, Giddings, pp 6–15Google Scholar
  31. Fulbright TE (1996) Viewpoint: a theoretical basis for planning woody plant control to maintain species diversity. J Range Manag 49:554–559. doi:10.2307/4002299 CrossRefGoogle Scholar
  32. Gile LH, Gibbens RP, Lenz JM (1998) Soil-induced variability in root systems of creosotebush (Larrea tridentata) and tarbush (Flourensia cernua). J Arid Environ 39:57–78. doi:10.1006/jare.1998.0377 CrossRefGoogle Scholar
  33. Gosz JR, Milne B (2005) Creosotebush biomass and productivity at five points. In: Dimensions of certain perennial plants on the Sevilleta National Wildlife Refuge. Sevilleta LTER Research.
  34. Grime JP (1981) Plant strategies and vegetation processes. John Wiley and Sons, New YorkGoogle Scholar
  35. Haase P, Pugnaire FI, Clark SC, Incoll LD (1996) Spatial patterns in a two-tiered semi-arid shrubland in Southeastern Spain. J Veg Sci 7:527–534. doi:10.2307/3236301 CrossRefGoogle Scholar
  36. HilleRisLambers R, Rietkerk M, Van Den Bosch F, Herbert HT, Hans de Kroon P (2001) Vegetation pattern formation in semi-arid grazing systems. Ecology 82:50–61Google Scholar
  37. INTA EEA Pergamino (1998) V Curso de Física de Suelos. Técnicas de Laboratorio. Sección SuelosGoogle Scholar
  38. INTA-GTZ (1996) Sistema Regional de Soporte de Decisiones. Pcia. Neuquén. Un diagnóstico del estado problemas y estrategias de desarrollo del sector agropecuario de la Patagonia Norte. INTA EEA Bariloche. Proyecto Prodeser. Convenio INTA-GTZGoogle Scholar
  39. Italconsult Argentina (1966) Proyecto de Riego y Colonización de La Picaza. Tomo I: Relación General y Tomo III: Apéndices. Pcia. NeuquénGoogle Scholar
  40. Jackson JBC, Buss LW, Cook RE (1985) Population biology and evolution of clonal organisms. Yale University Press, New HavenGoogle Scholar
  41. Ladyman J (2003) Gutierrezia sarothrae (Pursh) Britton and Rusby.
  42. Lascano R, Landivar J (1997) Soil gravimetric water content: measurement and calculations. Texas Agricultural Experiment Station. Lubbock and Corpus Christi.
  43. Lee CA, Lauenroth WK (1994) Spatial distribution of grass and shrubs root systems in the shortgrass steppe. Am Midl Nat 137:117–123. doi:10.2307/2426206 CrossRefGoogle Scholar
  44. Longland WS, Bateman SL (2002) Viewpoint: the ecological value of shrub islands on disturbed sagebrush rangelands. J Range Manag 55:571–575. doi:10.2307/4004000 CrossRefGoogle Scholar
  45. Ludwig JA, Tongway DJ (1995) Spatial organization of landscapes and its function in semi-arid woodlands, Australia. Landsc Ecol 10:51–63. doi:10.1007/BF00158553 CrossRefGoogle Scholar
  46. Ludwig JA, Eager RW, Williams RJ, Lowe LM (1999) Declines in vegetation patches, plant diversity, and grasshopper diversity near cattle watering-points in the Victoria River District, Northern Australia. Range J 21:135–149. doi:10.1071/RJ9990135 CrossRefGoogle Scholar
  47. Ludwig JA, Wilcox BP, Breshears DD, Tongway DJ, Imeson AC (2004) Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 86:288–297. doi:10.1890/03-0569 CrossRefGoogle Scholar
  48. Lyford F, Qashu H (1969) Infiltration rates as affected by desert vegetation. Water Resour Res 5:1373–1376. doi:10.1029/WR005i006p01373 CrossRefGoogle Scholar
  49. Mack RN, Pyke DA (1984) The demography of Bromus tectorum: the role of microclimate, grazing and disease. J Ecol 72:731–748. doi:10.2307/2259528 CrossRefGoogle Scholar
  50. Marshall KA (1995) Larrea tridentata. In: Fisher WC (ed) The fire effects information system (Online). US Department of Agriculture, Forest Service; Intermountain Research Station, Intermountain Fire Sciences Laboratory, Missoula.
  51. Montaña C (1992) Decolonization of bare areas in two-phase mosaics of an arid ecosystem. J Ecol 80:315–327. doi:10.2307/2261014 CrossRefGoogle Scholar
  52. Morello J (1956) Estudios botánicos en las regiones áridas de la Argentina. III: Reacciones de las plantas a los movimientos del suelo en Neuquén extra-andino. Rev Agron Nor Arg 2:79–152Google Scholar
  53. Morello J (1958) La provincia fitogeográfica del Monte. Opera Lilloana II. Instituto “Miguel Lillo”, Universidad Nacional de TucumánGoogle Scholar
  54. Movia CP, Ower GH, Pérez CE (1982) Estudio de la Vegetación Natural. Ministerio de Hacienda, Subsecretaría de Recursos Naturales Pcia. NeuquénGoogle Scholar
  55. Nelson D (1999) Restoration of vegetation and soil patterning in semi-arid mulga lands of Eastern Australia.
  56. Northrup BK, Stuth JW, Archer S, McKown D, Crane A (1995) Structure of shrub clusters in a subtropical savanna in South Texas. In: NE West Salt Lake City Utah (ed) Rangelands in a sustainable biosphere. Proceedings of the Fifth International Range CongressGoogle Scholar
  57. Norton BE, Bermant DJ (1977) Plant replacement and population interactions of perennials in salt desert shrub vegetation. Annual Meeting of the Ecological Society of America, LansingGoogle Scholar
  58. Olsen SR, Sommers LE (1982) Phosphorus. In: Miller RH, Keeney DR (eds) Methods of soil analysis. Agronomy # 9, ASA SSSA, Madison, pp 403–430Google Scholar
  59. Osman A, Pieper RD (1988) Growth of Gutierrezia sarothrae seedlings in the field. J Range Manag 41:92–93. doi:10.2307/3898801 CrossRefGoogle Scholar
  60. Pielou EC (1977) Mathematical ecology. Wiley, New YorkGoogle Scholar
  61. Pyke DA, Archer S (1991) Plant-plant interactions affecting plant establishment and persistence on revegetated rangeland. J Range Manag 44:550–557. doi:10.2307/4003035 CrossRefGoogle Scholar
  62. Raven PH, Evert RF, Eichhorn SE (1986) Biology of plants. Worth Publishers Inc, New YorkGoogle Scholar
  63. Rostagno CM, del Valle HF (1988) Mounds associated with shrubs in aridic soils of northeastern Patagonia: characteristics and probable genesis. Catena 15:347–359. doi:10.1016/0341-8162(88)90056-2 CrossRefGoogle Scholar
  64. Russell PF, Rao TR (1940) On habitat and association of species of anopheline larvae in south-eastern Madras. J Malar Inst India 3:153–178Google Scholar
  65. Sala OE, Lahuenroth WK (1982) Small rainfall events: an ecological role in semiarid regions. Oecologia 53:301–304. doi:10.1007/BF00389004 CrossRefGoogle Scholar
  66. Sánchez G, Puigdefabregas J (1994) Interactions of plant growth and sediment movement on slopes in a semiarid environment. Geomorphology 9:243–260. doi:10.1016/0169-555X(94)90066-3 CrossRefGoogle Scholar
  67. Schenk HJ (1999) Clonal splitting in desert shrubs. Plant Ecol 141:41–52. doi:10.1023/A:1009895603783 CrossRefGoogle Scholar
  68. Schenk HJ (2004) Sizes and shapes of root systems in pulse-driven ecosystems.
  69. Schenk HJ, Holzapfel C, Hamilton JG, Mahall BE (2003) Spatial ecology of a small desert shrub on adjacent geological substrates. J Ecol 91:383–395. doi:10.1046/j.1365-2745.2003.00782.x CrossRefGoogle Scholar
  70. Schulte LA, Niemi GJ (1998) Bird communities of early-successional burned and logged forest. J Wildl Manag 64:1418–1429. doi:10.2307/3802008 CrossRefGoogle Scholar
  71. Servicio Meteorológico Nacional (1958) Estadísticas climatológicas 1941-1950. Publicación B1. No 3. Ministerio de Aeronáutica, ArgentinaGoogle Scholar
  72. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423Google Scholar
  73. Silvertown J, Wilson JB (1994) Community structure in a desert perennial community. Ecology 75:409–417. doi:10.2307/1939544 CrossRefGoogle Scholar
  74. Soil Survey Staff (1975) Soil taxonomy. USDA agriculture handbook no. 436. US Government Printing Office, Washington DCGoogle Scholar
  75. Soriano A (1956) Los distritos florísticos de la Provincia Patagónica. Rev Inv Agric 10:323–348Google Scholar
  76. Soriano A, Sala OE, Perelman SB (1994) Patch structure and dynamics in a Patagonian arid steppe. Vegetatio 111:127–135. doi:10.1007/BF00040332 CrossRefGoogle Scholar
  77. SSSA (1996) Methods of soil analysis. Part 3. Chemical methods—SSSA book series no. 5. Soil Sci Soc Amer and Am Soc Agron, MadisonGoogle Scholar
  78. Sutter GC, Brigham RM (1998) Avifaunal and habitat changes resulting from conversion of native prairies to crested wheatgrass: patterns at songbird community and species level. Can J Zool 76:869–875. doi:10.1139/cjz-76-5-869 CrossRefGoogle Scholar
  79. Thorsteinsson I, Olafsson G, van Dyne GM (1971) Range resources of Iceland. J Range Manag 24:86–93. doi:10.2307/3896512 CrossRefGoogle Scholar
  80. Tirmenstein D (1999) USDA forest service rocky mountain research station, fire sciences laboratory (October 2001). Fire Effects Information System.
  81. Tongway DJ, Ludwig JA (1989) Mulga log mounds: fertile patches in the semi-arid woodlands of eastern Australia. Aust J Ecol 14:263–268. doi:10.1111/j.1442-9993.1989.tb01436.x CrossRefGoogle Scholar
  82. Tongway DJ, Ludwig JA (1990) Vegetation patterning in semi-arid mulga lands of eastern Australia. Aust J Ecol 15:23–34. doi:10.1111/j.1442-9993.1990.tb01017.x CrossRefGoogle Scholar
  83. Tongway DJ, Ludwig JA (1996) Rehabilitation of semi-arid landscapes in Australia. I. Restoring productive soil patches. Restor Ecol 4:388–397. doi:10.1111/j.1526-100X.1996.tb00191.x CrossRefGoogle Scholar
  84. USDA (1954) Diagnóstico y Rehabilitación de Suelos Salinos y Sódicos. Manual de Agricultura No. 60Google Scholar
  85. Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37. doi:10.1097/00010694-193401000-00003 CrossRefGoogle Scholar
  86. West NE (1989) Spatial pattern—functional interactions in shrub-dominated plant communities. In: The biology and utilization of shrubs. Academic Press Inc. pp 283–305Google Scholar
  87. Wilcox BP, Breshears DD (1994) Hydrology and ecology of piñon-juniper woodlands: conceptual framework and field studies. In: Desired future conditions for piñon-juniper ecosystems. Rocky Mountain Forest and Range Experiment Station, Technical Report INT-258, Fort Collins, CO, pp 109–119.
  88. Wilson JB, Briske DD (1978) Drought and temperature effects on the establishment of blue grama seedlings. In: Proceedings of the First International Rangeland Congress. Denver, pp 359–361Google Scholar
  89. Yeaton RI (1978) A cyclical relationship between Larrea tridentata and Opuntia leptocaulis in the northern Chihuahuan Desert. J Ecol 66:651–656. doi:10.2307/2259156 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Departamento de Agronomía y CERZOS (CONICET)National University of the SouthBahía BlancaArgentina
  2. 2.INTA EEA BarilocheSan Carlos de BarilocheArgentina

Personalised recommendations