Biodiversity and Conservation

, Volume 18, Issue 11, pp 2961–2978 | Cite as

Capacity of large-scale, long-term biodiversity monitoring programmes to detect trends in species prevalence

  • Scott E. NielsenEmail author
  • Diane L. Haughland
  • Erin Bayne
  • Jim Schieck
Original Paper


There is a critical need for monitoring programmes to assess change or trends in species status to inform conservation. A key aspect in developing such programmes is evaluating their statistical power—the ability to detect a real change. Here we examine the capacity of a broad-scale biodiversity monitoring programme in Alberta, Canada to measure changes in species prevalence. Using observed variation in detectability and prevalence for 252 species monitored at 85 sites, we simulated 3% annual declines and evaluated sample size (6 different sizes) and length of monitoring (5 different durations) necessary to detect change with a 90% certainty (power) at an α of 0.1. Our results suggest that after four monitoring cycles (e.g., 20 years for a 5-year cycle) a power of 90% can be expected for 99% of species when monitoring 1,625 sites, 65% of species for 300 sites, 27% of species for 75 sites, and 8% of species for 25 sites. We found that 66% detectability and 50% prevalence were needed to ensure that 3% annual change is detected at 50 sites over a 20-year period. Our results demonstrate that broad-scale monitoring programmes cannot effectively detect trends in all species at all spatial scales. The time period and spatial scale necessary to detect a real change at a specified level needs to be provided to stakeholders to ensure the short-term success of biodiversity monitoring programmes and to ensure that the most robust indicators of biodiversity are selected.


Alberta Biodiversity monitoring Detectability Prevalence Statistical power 


  1. Alberta Biodiversity Monitoring Institute (2007) Terrestrial field data collection protocols, Version 2.1. Alberta Biodiversity Monitoring Program, Alberta, Canada. Available via DIALOG Cited 24 April 2007
  2. Alberta Natural Heritage Information Centre (2006a) Bird tracking list. Available via DIALOG Cited 1 December 2007
  3. Alberta Natural Heritage Information Centre (2006b) Plant tracking and watch lists. Available via DIALOG Cited 1 December 2007
  4. Archaux F, Bergès L (2008) Optimising vegetation monitoring. A case study in a French lowland forest. Environ Monit Assess 141:19–25. doi: 10.1007/s10661-007-9874-0 PubMedCrossRefGoogle Scholar
  5. Biggs BG (2000) What is significant—Wollemi pine or the southern rushes? Ann Mo Bot Gard 87(1):72–80. doi: 10.2307/2666210 CrossRefGoogle Scholar
  6. Buckland ST, Magurran AE, Green RE, Fewster RM (2005) Monitoring change in biodiversity through composite indices. Philos Trans R Soc B-Biol Sci 360(1454):243–254CrossRefGoogle Scholar
  7. Butchart SHM, Stattersfield AJ, Baillie J, Bennun LA, Stuart SN, Akcakaya HR, Hilton-Taylor C, Mace GM (2005) Using Red List Indices to measure progress towards the 2010 target and beyond. Philos Trans R Soc B-Biol Sci 360(1454):255–268CrossRefGoogle Scholar
  8. Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296(5569):904–907. doi: 10.1126/science.1069349 PubMedCrossRefGoogle Scholar
  9. Clarke RT, Murphy JF (2006) Effects of locally rare taxa on the precision and sensitivity of RIVPACS bioassessment of freshwaters. Freshw Biol 51(10):1924–1940. doi: 10.1111/j.1365-2427.2006.01611.x CrossRefGoogle Scholar
  10. Drapeau P, Leduc A, McNeil R (1999) Refining the use of point counts at the scale of individual points in studies of bird-habitat. J Avian Biol 30(4):367–382. doi: 10.2307/3677009 CrossRefGoogle Scholar
  11. Duro D, Coops NC, Wulder MA, Han T (2007) Development of a large area biodiversity monitoring system driven by remote sensing. Prog Phys Geogr 31(3):235–260. doi: 10.1177/0309133307079054 CrossRefGoogle Scholar
  12. Edwards TC, Cutler DR, Geiser L, Alegria J, McKenzie D (2004) Assessing rarity of species with low detectability: lichens in Pacific Northwest forests. Ecol Appl 14(2):414–424. doi: 10.1890/02-5236 CrossRefGoogle Scholar
  13. Fairweather PG (1991) Statistical power and design requirements for environmental monitoring. Aust J Mar Freshwater Res 42(5):555–567. doi: 10.1071/MF9910555 CrossRefGoogle Scholar
  14. Favreau JM, Drew CA, Hess GR, Rubino MJ, Koch FH, Eschelbach KA (2006) Recommendations for assessing the effectiveness of surrogate species approaches. Biodivers Conserv 15(12):3949–3969. doi: 10.1007/s10531-005-2631-1 CrossRefGoogle Scholar
  15. Field SA, Tyre AJ, Jonzen N, Rhodes JR, Possingham HP (2004) Minimizing the cost of environmental management decisions by optimizing statistical thresholds. Ecol Lett 7(8):669–675. doi: 10.1111/j.1461-0248.2004.00625.x CrossRefGoogle Scholar
  16. Fox DR (2001) Environmental power analysis—a new perspective. Environmetrics 12(5):437–449. doi: 10.1002/env.470 CrossRefGoogle Scholar
  17. Gaston KJ (1994) Rarity. Chapman & Hall, LondonGoogle Scholar
  18. Gaston KJ, Fuller RA (2008) Commonness, population depletion and conservation biology. Trends Ecol Evol 23(1):14–19. doi: 10.1016/j.tree.2007.11.001 PubMedCrossRefGoogle Scholar
  19. Haefner JW (2005) Modeling biological systems, 2nd edn. Springer, New YorkGoogle Scholar
  20. Henry PY, Lengyel S, Nowicki P, Julliard R, Clobert J, Čelik T, Gruber B, Schmeller DS, Babij V, Henle K (2008) Integrating ongoing biodiversity monitoring: potential benefits and methods. Biodivers Conserv 17(14):3357–3382. doi: 10.1007/s10531-008-9417-1 CrossRefGoogle Scholar
  21. Huggard DJ, Dunsworth GB, Herbers JR, Klenner W, Kremsater LL, Serrouya R (2006) Monitoring ecological representation in currently non-harvestable areas: four British Columbia case studies. For Chron 82(3):383–394Google Scholar
  22. Karr JR, Chu EW (1999) Restoring life in running waters: better biological monitoring. Island Press, Washington, DCGoogle Scholar
  23. Lamb EG, Bayne E, Holloway G, Schieck J, Boutin S, Herbers J, Haughland DL (2009) Indices for monitoring biodiversity change: are some more effective than others? Ecol Indicators 9(3):432–444. doi: 10.1016/j.ecolind.2008.06.001 CrossRefGoogle Scholar
  24. Legg CJ, Nagy L (2006) Why most conservation monitoring is, but need not be, a waste of time. J Environ Manag 78(2):194–199. doi: 10.1016/j.jenvman.2005.04.016 CrossRefGoogle Scholar
  25. Lengyel S, Deri E, Varga Z, Horvath R, Tothmeresz B, Henry PY, Kobler A, Kutnar L, Babij V, Seliskar A, Christia C, Papastergiadou E, Gruber B, Henle K (2008a) Habitat monitoring in Europe: a description of current practices. Biodivers Conserv 17(14):3327–3339. doi: 10.1007/s10531-008-9395-3 CrossRefGoogle Scholar
  26. Lengyel S, Kobler A, Kutnar L, Framstad E, Henry PY, Babij V, Gruber B, Schmeller D, Henle K (2008b) A review and framework for the integration of biodiversity monitoring at the habitat level. Biodivers Conserv 17(14):3341–3356. doi: 10.1007/s10531-008-9359-7 CrossRefGoogle Scholar
  27. Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73(1):13–22. doi: 10.1093/biomet/73.1.13 CrossRefGoogle Scholar
  28. Lindenmayer DB, Manning A, Smith PL, Possingham HP, Fischer J, Oliver I, McCarthy MA (2002) The focal species approach and landscape restoration: a critique. Conserv Biol 16(2):338–345. doi: 10.1046/j.1523-1739.2002.00450.x CrossRefGoogle Scholar
  29. Lotz A, Allen CR (2007) Observer bias in anuran call surveys. J Wildl Manag 71(2):675–679. doi: 10.2193/2005-759 CrossRefGoogle Scholar
  30. MacKenzie DI, Nichols JD, Sutton N, Kawanishi K, Bailey LL (2005a) Improving inferences in population studies of rare species that are detected imperfectly. Ecology 86(5):1101–1113. doi: 10.1890/04-1060 CrossRefGoogle Scholar
  31. MacKenzie DI, Nichols JD, Pollock KH, Royle JA, Bailey LL, Hines JE (2005b) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic Press, AmsterdamGoogle Scholar
  32. Manley PN, Zielinski WJ, Schlesinger MD, Mori S (2004) Evaluation of a multiple-species approach to monitoring species at the ecoregional scale. Ecol Appl 14(1):296–310. doi: 10.1890/02-5249 CrossRefGoogle Scholar
  33. Manley PN, Schlesinger MD, Roth JK, Van Horne B (2005) A field-based evaluation of a presence-absence protocol for monitoring ecoregional-scale biodiversity. J Wildl Manag 69(3):950–966. doi: 10.2193/0022-541X(2005)069[0950:AFEOAP]2.0.CO;2 CrossRefGoogle Scholar
  34. Mapstone BD (1995) Scalable decision rules for environmental-impact studies—effect size, Type-I, and Type-II errors. Ecol Appl 5(2):401–410. doi: 10.2307/1942031 CrossRefGoogle Scholar
  35. Marsh DM, Trenham PC (2008) Current trends in plant and animal population monitoring. Conserv Biol 22(3):647–655. doi: 10.1111/j.1523-1739.2008.00927.x PubMedCrossRefGoogle Scholar
  36. McCune B, Dey JP, Peck JE, Cassell D, Heiman K, Will-Wolf S, Neitlich PN (1997) Repeatability of community data: species richness versus gradient scores in large-scale lichen studies. Bryologist 100(1):40–46Google Scholar
  37. Menard S (2000) Coefficients of determination for multiple logistic regression. Am Stat 54(1):17–24. doi: 10.2307/2685605 CrossRefGoogle Scholar
  38. Moss EH (1994) Flora of Alberta. In: Packer JG (ed), 2nd edn. University of Toronto Press, TorontoGoogle Scholar
  39. Nichols JD, Williams BK (2006) Monitoring for conservation. Trends Ecol Evol 21(12):668–673. doi: 10.1016/j.tree.2006.08.007 PubMedCrossRefGoogle Scholar
  40. Nielsen SE, Bayne EM, Schieck J, Herbers J, Boutin S (2007) A new method to estimate species and biodiversity intactness using empirically derived reference conditions. Biol Conserv 137(3):403–414. doi: 10.1016/j.biocon.2007.02.024 CrossRefGoogle Scholar
  41. Plattner M, Birrer S, Weber D (2004) Data quality in monitoring plant species richness in Switzerland. Community Ecol 5(1):135–143. doi: 10.1556/ComEc.5.2004.1.13 CrossRefGoogle Scholar
  42. Prendergast JR, Quinn RM, Lawton JH, Eversham BC, Gibbons DW (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365(6444):335–337. doi: 10.1038/365335a0 CrossRefGoogle Scholar
  43. Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405(6783):212–219. doi: 10.1038/35012221 PubMedCrossRefGoogle Scholar
  44. Roy DB, Rothery P, Brereton T (2007) Reduced-effort schemes for monitoring butterfly populations. J Appl Ecol 44(5):993–1000. doi: 10.1111/j.1365-2664.2007.01340.x CrossRefGoogle Scholar
  45. Secretariat of the Convention on Biological Diversity (2005) Handbook of the convention on biological diversity including its cartagena protocol on biosafety, 3rd edn. UNEP, MontrealGoogle Scholar
  46. Simberloff DA (1998) Flagships, umbrellas, and keystones: is single-species management passé in the landscape era? Biol Conserv 83(3):247–257. doi: 10.1016/S0006-3207(97)00081-5 CrossRefGoogle Scholar
  47. Stadt JJ, Schieck J, Stelfox HA (2006) Alberta biodiversity monitoring program—monitoring effectiveness of sustainable forest management planning. Environ Monit Assess 121(1):33–46. doi: 10.1007/s10661-005-9075-7 PubMedCrossRefGoogle Scholar
  48. StataCorp (2005) Stata statistical software: release 9. StataCorp, College StationGoogle Scholar
  49. Strand GH (1996) Detection of observer bias in ongoing forest health monitoring programmes. Can J Res 26(9):1692–1696. doi: 10.1139/x26-191 CrossRefGoogle Scholar
  50. Taylor BL, Gerrodette T (1993) The uses of statistical power in conservation biology: the Vaquita and Northern Spotted Owl. Conserv Biol 7(3):489–500. doi: 10.1046/j.1523-1739.1993.07030489.x CrossRefGoogle Scholar
  51. Thompson AA, Mapstone BD (1997) Observer effects and training in underwater visual surveys of reef fishes. Mar Ecol Prog Ser 154:53–63. doi: 10.3354/meps154053 CrossRefGoogle Scholar
  52. Urquhart NS, Kincaid TM (1999) Designs for detecting trend from repeated surveys of ecological resources. J Agric Biol Environ Stat 4(4):404–414CrossRefGoogle Scholar
  53. Van Strien AJ, Vande Pavert R, Moss D, Yates TJ, Van Swaay CAM, Vos P (1997) The statistical power of two butterfly monitoring schemes to detect trends. J Appl Ecol 34(3):817–828. doi: 10.2307/2404926 CrossRefGoogle Scholar
  54. Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16(8):446–453. doi: 10.1016/S0169-5347(01)02205-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Scott E. Nielsen
    • 1
    Email author
  • Diane L. Haughland
    • 2
  • Erin Bayne
    • 2
  • Jim Schieck
    • 2
    • 3
  1. 1.Department of Renewable ResourcesUniversity of AlbertaEdmontonCanada
  2. 2.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  3. 3.Alberta Biodiversity Monitoring InstituteAlberta Research CouncilVegrevilleCanada

Personalised recommendations