Biodiversity and Conservation

, Volume 18, Issue 7, pp 1829–1845 | Cite as

Minimum data requirements for designing a set of marine protected areas, using commonly available abiotic and biotic datasets

Original Paper

Abstract

Marine protected areas (MPAs) can be an effective tool for marine biodiversity conservation, yet decision-makers usually have limited and biased datasets with which to make decisions about where to locate MPAs. Using commonly available abiotic and biotic datasets, I asked how many datasets are necessary to achieve robust patterns of conservation importance. I applied a decision support tool for marine protected area design in two regions of British Columbia, Canada, and sequentially excluded the datasets with the most limited geographic distribution. I found that the reserve selection method was robust to some missing datasets. The removal of up to 15 of the most geographically limited datasets did not significantly change the geographic patterns of the importance of areas for conservation. Indeed, including abiotic datasets plus at least 12 biotic datasets resulted in a spatial pattern similar to including all available biotic datasets. It was best to combine abiotic and biotic datasets in order to ensure habitats and species were represented. Patterns of clustering differed according to whether I used one set alone or both combined. Biotic datasets served as better surrogates for abiotic datasets than vice versa, and both represented more biodiversity features than randomly selected reserves. These results should provide encouragement to decision-makers engaged in MPA planning with limited spatial data.

Keywords

Biodiversity surrogates Data limitations Marine conservation Marine reserves Marxan Selection algorithm Systematic conservation planning 

References

  1. Agardy T (2000) Information needs for marine protected areas: scientific and societal. Bull Mar Sci 66:875–888Google Scholar
  2. Airamé S, Dugan J, Lafferty KD et al (2003) Applying ecological criteria to marine reserve design: a case study from the California channel islands. Ecol Appl 13:S170–S184. doi:10.1890/1051-0761(2003)013[0170:AECTMR]2.0.CO;2 CrossRefGoogle Scholar
  3. Ardron J (2002) A GIS recipe for determining benthic complexity: an indicator of species richness. In: Breman J (ed) Marine geography: GIS for the oceans and seas. ESRI Press, CAGoogle Scholar
  4. Auster PJ, Joy K, Valentine PC (2001) Fish species and community distributions as proxies for seafloor habitat distributions: the Stellwagen bank national marine sanctuary example (Northwest Atlantic, Gulf Of Maine). Environ Biol Fishes 60:331–346. doi:10.1023/A:1011022320818 CrossRefGoogle Scholar
  5. Ball IR (2000) Mathematical applications for conservation ecology: the dynamics of tree hollows and the design of nature reserves, PhD Thesis. The University of AdelaideGoogle Scholar
  6. Ball IR, Possingham H (2000) Marxan (V1.8.2): marine reserve design using spatially explicit annealing, a manualGoogle Scholar
  7. Beger M, McKenna SA, Possingham HP (2007) Effectiveness of surrogate taxa in the design of coral reef reserve systems in the Indo-Pacific. Conserv Biol 21:1584–1593PubMedGoogle Scholar
  8. Booth AJ (2000) Incorporating the spatial component of fisheries data into stock assessment models. ICES J Mar Sci 57:858. doi:10.1006/jmsc.2000.0816 CrossRefGoogle Scholar
  9. Brooks TM, da Fonseca GAB, Rodrigues ASL (2004) Protected areas and species. Conserv Biol 18:616–618. doi:10.1111/j.1523-1739.2004.01836.x CrossRefGoogle Scholar
  10. CBD (2006) Decisions adopted by the conference of the parties to the convention on biological diversity at its eighth meeting (Decision VIII/15, Annex IV). Convention on Biological Diversity, Curitiba, BrazilGoogle Scholar
  11. Convention on Biological Diversity (2004) Convention on Biological Diversity: Indicators for assessing progress towards the 2010 target: coverage of protected areas. Convention on Biological Diversity, Bangkok, pp 1–12Google Scholar
  12. Dahlgren CP, Sobel J (2000) Designing a dry tortugas ecological reserve: how big is big enough? to do what? Bull Mar Sci 66:707–719Google Scholar
  13. Drew JA (2005) Use of traditional ecological Knowledge in marine conservation. Conserv Biol 19:1286–1293. doi:10.1111/j.1523-1739.2005.00158.x CrossRefGoogle Scholar
  14. Fernandes L, Day J, Lewis A et al (2005) Establishing representative no-take areas in the great barrier reef: large-scale implementation of theory on marine protected areas. Conserv Biol 19:1733–1744. doi:10.1111/j.1523-1739.2005.00302.x CrossRefGoogle Scholar
  15. Grand J, Cummings MP, Rebelo TG et al (2007) Biased data reduce efficiency and effectiveness of conservation reserve networks. Ecol Lett 10:364–374. doi:10.1111/j.1461-0248.2007.01025.x PubMedCrossRefGoogle Scholar
  16. Grantham HS, Moilanen A, Wilson KA et al (2008) Diminishing return on investment for biodiversity data in conservation planning. Conserv Lett 1:190–198Google Scholar
  17. Halpern BS, Warner RR (2002) Marine reserves have rapid and lasting effects. Ecol Lett 5:361–366. doi:10.1046/j.1461-0248.2002.00326.x CrossRefGoogle Scholar
  18. Halpern BS, Walbridge S, Selkoe KA et al (2008) A global map of human impact on marine ecosystems. Science 319:948–952. doi:10.1126/science:1149345 PubMedCrossRefGoogle Scholar
  19. Jackson JBC, Kirby MX, Berger WH et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637. doi:10.1126/science.1059199 PubMedCrossRefGoogle Scholar
  20. MP J (2007) JMP. SAS Institute Inc, Cary, North CarolinaGoogle Scholar
  21. Klein CJ, Chan A, Kircher L et al (2008) Striking a balance between biodiversity conservation and socioeconomic viability in the design of marine protected areas. Conserv Biol 33:691–700. doi:10.1111/j.1523-1739.2008.00896.x CrossRefGoogle Scholar
  22. Leslie H, Ruckelshaus M, Ball IR et al (2003) Using siting algorithms in the design of marine reserve networks. Ecol Appl 13:S185–S198. doi:10.1890/1051-0761(2003)013[0185:USAITD]2.0.CO;2 CrossRefGoogle Scholar
  23. Mace GM, Balmford A, Boitani L et al (2000) It’s time to work together and stop duplicating conservation efforts. Nature 405:393. doi:10.1038/35013247 PubMedCrossRefGoogle Scholar
  24. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253. doi:10.1038/35012251 PubMedCrossRefGoogle Scholar
  25. Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283. doi:10.1038/nature01610 PubMedCrossRefGoogle Scholar
  26. NOAA (2007) West coast of North America living marine resources data atlas: digital versionGoogle Scholar
  27. Parnell PE, Dayton PK, Lennert-Cody CE et al (2006) Marine reserve design: optimal size, habitats, species affinities, diversity, and ocean microclimate. Ecol Appl 16:945–962. doi:10.1890/1051-0761(2006)016[0945:MRDOSH]2.0.CO;2 PubMedCrossRefGoogle Scholar
  28. Pauly D, Christensen V, Dalsgaard J et al (1998) Fishing down marine food webs. Science 279:860–863. doi:10.1126/science.279.5352.860 PubMedCrossRefGoogle Scholar
  29. Plan Development Team (1990) The potential of marine fishery reserves for reef fish management in the US southern Atlantic. NOAA technical memorandum NMFS-SEFC-261, Springfield, VA, p 40Google Scholar
  30. Possingham HP, Ball IR, Andelman S (2000) Mathematical methods for identifying representative reserve networks. In: Ferson S, Burgman M (eds) Quantitative methods for conservation biology. Springer-Verlag, New York, pp 291–305CrossRefGoogle Scholar
  31. Pressey RL, Cowling RM (2001) Reserve selection algorithms and the real world. Conserv Biol 15:275–277. doi:10.1046/j.1523-1739.2001.99541.x CrossRefGoogle Scholar
  32. Pressey RL, Possingham HP, Margules CR (1996) Optimality in reserve selection algorithms: when does it matter and how much? Biol Conserv 76:259–267. doi:10.1016/0006-3207(95)00120-4 CrossRefGoogle Scholar
  33. Pressey RL, Possingham HP, Day JR (1997) Effectiveness of alternative heuristic algorithms for identifying indicative minimum requirements for conservation reserves. Biol Conserv 80:207–219. doi:10.1016/S0006-3207(96)00045-6 CrossRefGoogle Scholar
  34. Roberts CM (2000) Selecting marine reserve locations: optimality versus opportunism. Bull Mar Sci 66:581–592Google Scholar
  35. Roberts CM, Bohnsack JA, Gell F et al (2001) Effects of marine reserves on adjacent fisheries. Science 294:1920–1923. doi:10.1126/science.294.5548.1920 PubMedCrossRefGoogle Scholar
  36. Roberts CM, Andelman S, Branch G et al (2003a) Ecological criteria for evaluating candidate sites for marine reserves. Ecol Appl 13:S199–S214. doi:10.1890/1051-0761(2003)013[0199:ECFECS]2.0.CO;2 CrossRefGoogle Scholar
  37. Roberts CM, Branch G, Bustamente RH et al (2003b) Application of ecological criteria in selecting marine reserves and developing reserve networks. Ecol Appl 13:S215–S228. doi:10.1890/1051-0761(2003)013[0215:AOECIS]2.0.CO;2 CrossRefGoogle Scholar
  38. Rondinini C, Wilson KA, Boitani L et al (2006) Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol Lett 9:1136–1145. doi:10.1111/j.1461-0248.2006.00970.x PubMedCrossRefGoogle Scholar
  39. Sala E, Knowlton N (2006) Global marine biodiversity trends. Annu Rev Environ Resour 31:93–122. doi:10.1146/annurev.energy.31.020105.100235 CrossRefGoogle Scholar
  40. Sala E, Aburto-Oropeza O, Paredes G et al (2002) A general model for designing networks of marine reserves. Science 298:1991–1993. doi:10.1126/science.1075284 PubMedCrossRefGoogle Scholar
  41. Smith R, Goodman P, Matthews W (2006) Systematic conservation planning: a review of perceived limitations and an illustration of the benefits, using a case study from Maputaland, South Africa. Oryx 40:400–410. doi:10.1017/S0030605306001232 CrossRefGoogle Scholar
  42. Stewart RR, Noyce T, Possingham HP (2003) Opportunity cost of ad hoc marine reserve design decisions: an example from South Australia. Mar Ecol Prog Ser 253:25–38. doi:10.3354/meps253025 CrossRefGoogle Scholar
  43. Stewart RR, Ball IR, Possingham HP (2007) The effect of incremental reserve design and changing reservation goals on the long-term efficiency of reserve systems. Conserv Biol 21:346–354. doi:10.1111/j.1523-1739.2006.00618.x PubMedCrossRefGoogle Scholar
  44. Tetreault I, Ambrose RF (2007) Temperate marine reserves enhance targeted but not untargeted fishes in multiple no-take MPAs. Ecol Appl 17:2251–2267. doi:10.1890/06-0161.1 PubMedCrossRefGoogle Scholar
  45. Ward T, Vanderklift M, Nicholls A et al (1999) Selecting marine reserves using habitats and species assemblages as surrogates for biological diversity. Ecol Appl 9:691–698. doi:10.1890/1051-0761(1999)009[0691:SMRUHA]2.0.CO;2 CrossRefGoogle Scholar
  46. Warman LD, Sinclair ARE, Scudder GGE et al (2004) Sensitivity of systematic reserve selection to decisions about scale, biological data, and targets: case study from southern British Columbia. Conserv Biol 18:655–666. doi:10.1111/j.1523-1739.2004.00538.x CrossRefGoogle Scholar
  47. Wood LJ, Fish L, Laughren J, et al (2007) Assessing progress towards global marine protection targets: shortfalls in information and action. UBC Fisheries centre working paper series #2007-03: 1–39Google Scholar
  48. World Summit on Sustainable Development (2003) World summit on sustainable development plan of implementation (oceans section). World Summit on Sustainable DevelopmentGoogle Scholar
  49. Zacharias MA, Howes DE, Harper JR et al (1998) The British Columbia marine ecosystem classification: rationale, development, and verification. Coast Manage 26:105–124. doi:10.1080/08920759809362347 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Fisheries Centre/Project SeahorseUniversity of British ColumbiaVancouverCanada
  2. 2.Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia

Personalised recommendations