Removal of palm fruits and ecosystem engineering in palm stands by white-lipped peccaries (Tayassu pecari) and other frugivores in an isolated Atlantic Forest fragment

  • Alexine KeuroghlianEmail author
  • Donald P. Eaton
Original Paper


Long-term studies in a 2,178 ha fragment of semideciduous Atlantic Forest demonstrated important interactions between white-lipped peccaries (Tayassu pecari) and the common palms, Syagrus romanzoffiana and Euterpe edulis. We conducted fruit removal and medium-to-large-sized mammalian exclusion experiments to: (1) quantify seasonal fruit consumption from high-density patches beneath parent trees by T. pecari and other consumers, and (2) measure impacts of T. pecari rooting and foraging activities on seedling dynamics in E. edulis stands. A diverse array of fauna consumed S. romanzoffiana fruits. During the dry season, when S. romanzoffiana palms provided 68% of fruit dry weight in the fragment, T. pecari consumed significantly greater amounts than other consumers, and along with Pecari tajacu and Tapirus terrestris, were potential seed dispersers. The rodents, Sciurus ingrami and Agouti paca, consumed most S. romanzoffiana fruits in the wet season, acting as both seed dispersers and predators. More than 95% of E. edulis fruit removal was due to seed predation by T. pecari. Intense removal during the dry season was closely linked with previously documented range shifts and habitat preferences by T. pecari. Exclusion plot experiments in E. edulis (palmito) stands showed that the number and proportion of nonpalmito (not E. edulis) seedlings increased dramatically in the absence of T. pecari rooting and foraging activities that disturbed soil and thinned seedlings. We discuss the importance of these ecosystem engineering activities and palm-peccary trophic interactions for long-term maintenance of E. edulis stands and T. pecari populations, as well as water balance, in the forest fragment.


Collared peccary Euterpe edulis Ecosystem engineer Exclusion experiment Frugivory Fruit removal Syagrus romanzoffiana Tropical forest fragment White-lipped peccary 



This project was funded by Earthwatch Institute, the Scott Neotropic Fund of Lincoln Park Zoological Society, Sigma Xi, Exploratory Fund, University of Nevada—Reno, Chicago Zoological Society, PEO, the Peccary Specialist Group—IUCN, and Rio Tinto. We are also grateful to the Earthwatch volunteers and Brazilian colleagues that helped gather data; A. Emerson, G. Betini, M. Cotait, P. Medici, L. Cullen, Jr., M. Barbosa. The neighboring farmers were extremely generous; Faz. Bela Vista, Sr. J. Henrique, and Faz. Torrão de Ouro. We are grateful for the logistical support provided by the IF/SMA—Instituto Florestal de São Paulo. We would like to thank M. Galetti and A. Desbiez for stimulating discussions on frugivory, and an anonymous reviewer for improving an earlier version of the article. AK thanks her committee members; S. Jenkins, the late L. Krysl, the late G. Vinyard, P. Stacey, S. B. Vander Wall, D. W. Holcombe, and especially her advisor W. S. Longland. We thank the late J. Carvalho for his devoted field assistance.


  1. Altrichter M, Carillo E, Saenz J, Fuller T (2001) White lipped peccary (Tayassu pecari) diet and fruit availability in a Costa Rican rain forest. Biol Trop 49:1105–1114Google Scholar
  2. Beck H (2005) Seed predation and dispersal by peccaries throughout the Neotropics and its consequences: a review and synthesis. In: Forget PM, Lambert JE, Hulme PE, Vander Wall SB (eds) Seed fate: predation, dispersal and seedling establishment. CABI Publishing, Wallingford, pp 77–115Google Scholar
  3. Bodmer RE (1989a) Ungulate biomass in relation to feeding strategy within Amazonian forests. Oecologia 81:547–550. doi: 10.1007/BF00378967 CrossRefGoogle Scholar
  4. Bodmer RE (1989b) Frugivory in Amazonian Artiodactyla: evidence for the evolution of the ruminant stomach. J Zool (Lond) 219:457–467CrossRefGoogle Scholar
  5. Bodmer RE (1990a) Responses of ungulates to seasonal inundations in the Amazon floodplain. J Trop Ecol 6:191–201Google Scholar
  6. Bodmer RE (1990b) Fruit patch size and frugivory in the lowland tapir (Tapirus terrestris). J Zool 22:121–128CrossRefGoogle Scholar
  7. Cullen L Jr, Bodmer RE, Valladares-Padua C (2000) Effects of hunting in habitat fragments of the Atlantic forests, Brazil. Biol Conserv 95:49–56. doi: 10.1016/S0006-3207(00)00011-2 CrossRefGoogle Scholar
  8. Cullen L Jr, Bodmer RE, Valladares-Padua C (2001) Ecological consequences of hunting in Atlantic forest patches, Sao Paulo, Brazil. Oryx 35(2):137–144. doi: 10.1046/j.1365-3008.2001.00163.x Google Scholar
  9. Demment MW, Van Soest PJ (1985) A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am Nat 125:641–672. doi: 10.1086/284369 CrossRefGoogle Scholar
  10. Ditt EH (2002) Fragmentos florestais no Pontal do Paranapanema. Annablume Editora/IPEˆ/IIEB, Sao PauloGoogle Scholar
  11. Fleury M, Galetti M (2004) Effects of microhabitat on palm seed predation in two forest fragments in southeast Brazil. Acta Oecol 26:179–184. doi: 10.1016/j.actao.2004.04.003 CrossRefGoogle Scholar
  12. Fleury M, Galetti M (2006) Forest fragment size and microhabitat effects on palm seed predation. Biol Conserv 131:1–13. doi: 10.1016/j.biocon.2005.10.049 CrossRefGoogle Scholar
  13. Fragoso JMV (1998a) Home range and movement patterns of white lipped peccary (Tayassu pecari) herds in the Northern Brazilian Amazon. Biotropica 30:458–469. doi: 10.1111/j.1744-7429.1998.tb00080.x CrossRefGoogle Scholar
  14. Fragoso JMV (1998b) White-lipped peccaries and palms on the Ilha de Maraca. In: Milliken J, Ratter J (eds) Maraca: the biodiversity and environment of an Amazonian rainforest. John Wiley, New York, pp 151–163Google Scholar
  15. Galetti M (1996) Fruits and frugivores in a Brazilian Atlantic forest. Ph.D. thesis, University of Cambridge, EnglandGoogle Scholar
  16. Galetti M, Aleixo A (1998) Effects of the harvesting of a keystone palm on frugivores in the Atlantic forest of Brazil. J Appl Ecol 34:286–293. doi: 10.1046/j.1365-2664.1998.00294.x CrossRefGoogle Scholar
  17. Galetti M, Fernandez JC (1998) Palm heart harvesting in the Brazilian Atlantic forest: changes in industry structure and the illegal trade. J Appl Ecol 35:294–301. doi: 10.1046/j.1365-2664.1998.00295.x CrossRefGoogle Scholar
  18. Galetti M, Zipparro VB, Morellato PC (1999) Fruiting phenology and frugivory on the palm Euterpe edulis in a lowland Atlantic forest of Brazil. Ecotropica 5:115–122Google Scholar
  19. Galetti M, Keuroghlian A, Hanada L, Morato MI (2001) Frugivory and seed dispersal by the Lowland Tapir (Tapirus terrestris) in Southeast Brazil. Biotropica 33(4):723–726Google Scholar
  20. Galetti M, Donatti CI, Pires AS, Guimarães PR Jr, Jordano P (2006) Seed survival and dispersal of an endemic Atlantic forest palm: the combined effects of defaunation and forest fragmentation. Bot J Linn Soc 151:141–149CrossRefGoogle Scholar
  21. Guimarães PR, Lopes PFM, Lyra ML, Muriel AP (2005) Fleshy pulp enhances the location of Syagrus romanzoffiana (Arecaceae) fruits by seed-dispersing rodents in an Atlantic forest in southeastern Brazil. J Trop Ecol 21:109–112CrossRefGoogle Scholar
  22. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386. doi: 10.2307/3545850 CrossRefGoogle Scholar
  23. Judas J, Henry O (1999) Seasonal variation of home range of collared peccary in tropical rain forests of French Guiana. J Wildl Manag 63:546–555. doi: 10.2307/3802641 CrossRefGoogle Scholar
  24. Keuroghlian A (1990) Observations on the behavioral ecology of the black lion tamarin (Leontopithecus chrysopygus) at Caetetus Reserve, São Paulo, Brasil. M.S. thesis, University of West Virginia, West VirginiaGoogle Scholar
  25. Keuroghlian A (2003) The response of peccaries to seasonal fluctuations in an isolated patch of tropical forest. Ph.D. dissertation, University of Nevada, Reno, Reno, NevadaGoogle Scholar
  26. Keuroghlian A, Eaton DP (2008a) Fruit availability and peccary frugivory in an isolated Atlantic forest fragment: effects on peccary ranging behavior and habitat use. Biotropica 40:62–70Google Scholar
  27. Keuroghlian A, Eaton DP (2008b) Importance of rare habitats and riparian zones in a tropical forest fragment: preferential use by Tayassu pecari, a wide-ranging frugivore. J Zool (Lond) 275:283–293. doi: 10.1111/j.1469-7998.2008.00440.x CrossRefGoogle Scholar
  28. Keuroghlian A, Eaton DP, Longland WS (2004) Area use by white-lipped and collared peccaries (Tayassu pecari and Tayassu tajacu) in a tropical forest fragment. Biol Conserv 120:411–425. doi: 10.1016/j.biocon.2004.03.016 CrossRefGoogle Scholar
  29. Kiltie RA (1980) Seed predation and group size in rain forest peccaries. Ph.D. dissertation, Princeton University, Princeton, New JerseyGoogle Scholar
  30. Kiltie RA (1981) Stomach contents of rain forest peccaries (Tayassu tajacu and T. pecari). Biotropica 13:234–236CrossRefGoogle Scholar
  31. Kiltie RA, Terborgh J (1983) Observations on the behavior of rain forest peccaries in Peru: why do white-lipped peccaries form herds? Z Tierpsychol 62:241–255Google Scholar
  32. Leighton M, Leighton DR (1983) Vertebrate responses to fruiting seasonality within a Bornean rainforest. In: Sutton SL, Whitmore TC, Chadwick AC (eds) Tropical rainforests: ecology and management. Blackwell Scientific, Oxford, pp 181–209Google Scholar
  33. Matos DM, Watkinson AR (1998) The fecundity, seed, and seedling ecology of the edible palm Euterpe edulis in southeastern Brazil. Biotropica 30:595–603. doi: 10.1111/j.1744-7429.1998.tb00099.x CrossRefGoogle Scholar
  34. Mills LS, Soulé ME, Doak DF (1993) The keystone-species concept in ecology and conservation. Bioscience 43:219–224. doi: 10.2307/1312122 CrossRefGoogle Scholar
  35. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear regression models, 3rd edn. Irwin, ChicagoGoogle Scholar
  36. Nunes MFC, Galetti M (2007) Use of forest fragments by blue-winged macaws (Primolius maracana) within a fragmented landscape. Biodivers Conserv 16:953–967. doi: 10.1007/s10531-006-9034-9 CrossRefGoogle Scholar
  37. Painter LRE (1998) Gardeners of the forest: plant-animal interactions in a Neotropical forest ungulate community. Ph.D. dissertation, University of Liverpool, LiverpoolGoogle Scholar
  38. Paschoal M, Galetti M (1995) Seasonal food use by the Neotropical Squirrel Sciurus ingrami in Southeastern Brazil. Biotropica 27:268–273. doi: 10.2307/2389006 CrossRefGoogle Scholar
  39. Passos FC (1997) Padrão de atividades, dieta e uso do espaço em um grupo de mico-leão-preto (Leontopithecus chrysopygus) na Estacão Ecológica dos Caetetus, SP. Ph.D. dissertation, Universidade de São Carlos, São Carlos, SPGoogle Scholar
  40. Peres CA (1994) Primate responses to phenological changes in an Amazonian terra-firme forest. Biotropica 26:98–112. doi: 10.2307/2389114 CrossRefGoogle Scholar
  41. Pizo MA, Simão I (2001) Seed deposition patterns and the survival of seeds and seedlings of the palm Euterpe edulis. Acta Oecol 22:229–233. doi: 10.1016/S1146-609X(01)01108-0 CrossRefGoogle Scholar
  42. Rodrigues M, Olmos F, Galetti M (1993) Seed dispersal by tapir in southeastern Brazil. Mammalia 57:460–461Google Scholar
  43. Serra-Filho R, Cavalli CA, Guillaumon JR, Chiarini JV, Nogueira FP, Montfort LCM, Barbier JL, Donzeli PLSC, Bittencourt I (1975) Levantamento da cobertura natural e de reflorestamento no Estado de São Paulo. Boletim tecnico do Instituto Florestal 1–53Google Scholar
  44. Silman MR, Terborgh JW, Kiltie RA (2003) Population regulation of a dominant rain forest tree by a major seed predator. Ecology 84(2):431–438. doi: 10.1890/0012-9658(2003)084[0431:PROADR]2.0.CO;2 CrossRefGoogle Scholar
  45. Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research, 2nd edn. W. H. Freeman and Co., San FranciscoGoogle Scholar
  46. Sowls LK (1997) Javelinas and other peccaries: their biology, management, and use, 2nd edn. Texas A & M University Press, College StationGoogle Scholar
  47. Tabanez MF, Durigan G, Keuroghlian A, Barbosa AF, Freitas CA, Silva CEF, Silva DA, Eaton DPE, Brisolla G, Faria HH, Mattos IFA, Lobo MR, Rossi M, Souza MG, Machado RB, Pfeifer RM, Ramos VS, Andrade WJ, Contieri WA (2005) Plano de Manejo da Estação Ecológica dos Caetetus. Inst Florestal Ser Registros Sao Paulo 29:1–103Google Scholar
  48. Tabarelli M, Silva MJC, Gascon C (2004) Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodivers Conserv 13:1419–1425. doi: 10.1023/B:BIOC.0000019398.36045.1b CrossRefGoogle Scholar
  49. Terborgh J (1986) Keystone plant resources in the tropical forest. In: Soulé ME (ed) Conservation biology, the science of scarcity and diversity. Sinauer Associates, Inc., Sunderland, pp 330–344Google Scholar
  50. Vander Wall SB (1994) Removal of wind-dispersed seeds by ground foraging vertebrates. Oikos 69:125–132CrossRefGoogle Scholar
  51. Viana VM, Tabanez AAJ, Batista JLF (1997) Dynamics and restoration of forest fragments in the Brazilian Atlantic moist forest. In: Laurance WF, Bierregaard RO Jr (eds) Tropical forest remnants: ecology, management, and conservation of fragmented communities. The University of Chicago Press, Chicago, pp 351–365Google Scholar
  52. Wilkinson L (1990) SYSTAT: the system for statistics, Evanson, IL: SYSTAT, Inc.Google Scholar
  53. Wright SJ, Duber HC (2001) Poachers and forest fragmentation alter seed dispersal, seed survival, and seedling recruitment in the palm Attalea butyraceae, with implications for tropical tree diversity. Biotropica 33:583–595Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Program in Ecology, Evolution, and Conservation BiologyUniversity of Nevada-RenoRenoUSA
  2. 2.Wildlife Conservation SocietyRio de JaneiroBrazil

Personalised recommendations