Influence of tree age, tree size and crown structure on lichen communities in mature Alpine spruce forests

  • Juri Nascimbene
  • Lorenzo Marini
  • Renzo Motta
  • Pier Luigi Nimis
Original Paper


Testing the relations between tree parameters and the richness and composition of lichen communities in near-natural stands could be a first step to gather information for forest managers interested in conservation and in biodiversity assessment and monitoring. This work aims at evaluating the influence of tree age and age-related parameters on tree-level richness and community composition of lichens on spruce in an Alpine forest. The lichen survey was carried out in four sites used for long-term monitoring. In each site, tree age, diameter at breast height, tree height, the first branch height, and crown projection area were measured for each tree. Trees were stratified into three age classes: (1) <100 years old, immature trees usually not suitable for felling, (2) 100–200 years old, mature trees suitable for felling, and (3) >200 years old, over-mature trees normally rare or absent in managed stands. In each site, seven trees in each age class were selected randomly. Tree age and related parameters proved to influence both tree-level species richness and composition of lichen communities. Species richness increased with tree age and related parameters indicative of tree size. This relation could be interpreted as the result of different joint effects of age per se and tree size with its area-effect. Species turnover is also suspected to improve species richness on over-mature trees. Similarly to species richness, tree-level species composition can be partially explained by tree-related parameters. Species composition changed from young to old trees, several lichens being associated with over-mature trees. This pool of species, including nationally rare lichens, represents a community which is probably poorly developed in managed forests. In accordance to the general aims of near-to-nature forestry, the presence of over-mature trees should be enhanced in the future forest landscape of the Alps especially in protected areas and Natura 2,000 sites, where conservation purposes are explicitly included in the management guidelines.


Calicioid species Conservation Italian Alps Over-mature trees Rare species Species richness Species composition 


  1. Asta J, Erhardt W, Ferretti M et al (2002) Mapping lichen diversity as an indicator of environmental quality. In: Nimis PL, Scheidegger C, Wolseley P (eds) Monitoring with lichens, Monitoring lichens. Kluwer, NATO Science Series, Earth and Envir., Ser. 7, pp 273–279Google Scholar
  2. Bergamini A, Scheidegger C, Stofer S et al (2005) Performance of macrolichens and lichen genera as indicators of lichen species richness and composition. Conserv Biol 19:1051–1062. doi:10.1111/j.1523-1739.2005.004125.x Google Scholar
  3. Berryman S, Mc Cune B (2006) Epiphytic lichens along gradients in topography and stand structure in western Oregon, USA. Pac Northwest Fungi 1:1–38. doi:10.2509/pnwf.2006.001.002 CrossRefGoogle Scholar
  4. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi:10.2307/1940179 CrossRefGoogle Scholar
  5. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  6. Fritz Ö, Gustafsson L, Larsson K (2008) Does forest continuity matter in conservation?—A study of epiphytic lichens and bryophytes in beech forests of southern Sweden. Biol Conserv 141:655–668CrossRefGoogle Scholar
  7. Giordani P, Brunialti G, Nascimbene J (2006) Aspects of biological diversity in the CONECOFOR plots. III. Epiphytic lichens. Annali Istituto Sperimentale per la Selvicoltura 30(Suppl 2):43–50Google Scholar
  8. Hedenås H, Ericson L (2000) Epiphytic macrolichens as conservation indicators: successional sequence in Populus tremula stands. Biol Conserv 93:43–53. doi:10.1016/S0006-3207(99)00113-5 CrossRefGoogle Scholar
  9. Hilmo O (1994) Distribution and succession of epiphytic lichens on Picea abies branches in a boreal forest, central Norway. Lichenologist 26:149–169. doi:10.1006/lich.1994.1013 CrossRefGoogle Scholar
  10. Holmes RL (1983) Computer-assisted quality control in tree ring dating measurement. Tree-Ring Bull 43:69–75Google Scholar
  11. Humphrey JW, Davey S, Peace AJ et al (2002) Lichens and bryophyte communities of planted and semi-natural forests in Britain: the influence of site type, stand structure and deadwood. Biol Conserv 107:165–180. doi:10.1016/S0006-3207(02)00057-5 CrossRefGoogle Scholar
  12. Hyvärinen M, Halonen P, Kauppi M (1992) Influence of stand age and structure on the epiphytic lichen vegetation in the middle-boreal forests of Finland. Lichenologist 24(2):165–180Google Scholar
  13. Johansson P, Rydin H, Thor G (2007) Tree age relationships with epiphytic lichen diversity and lichen life history traits on ash in southern Sweden. Ecoscience 14(1):81–91. doi:10.2980/1195-6860(2007)14[81:TARWEL]2.0.CO;2 CrossRefGoogle Scholar
  14. Jovan S, Mc Cune B (2004) Regional variation in epiphytic macrolichen communities in northern and central California forests. Bryologists 107(3):328–339. doi:10.1639/0007-2745(2004)107[0328:RVIEMC]2.0.CO;2 CrossRefGoogle Scholar
  15. Kerr JT, Sugar A, Packer L (2000) Indicator taxa, rapid biodiversity assessment, and nestedness in an endangered ecosystem. Conserv Biol 14:1726–1734. doi:10.1046/j.1523-1739.2000.99275.x CrossRefGoogle Scholar
  16. Landers PB, Verner J, Thomas JW (1988) Ecological uses of vertebrate indicator species: a critique. Conserv Biol 2:316–328. doi:10.1111/j.1523-1739.1988.tb00195.x CrossRefGoogle Scholar
  17. Lawton JH, Bignell BL, Bolton B et al (1998) Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391:72–76. doi:10.1038/34166 CrossRefGoogle Scholar
  18. Lindenmayer DB, Margules CR, Botkin DB (2000) Indicators of biodiversity for ecologically sustainable forest management. Conserv Biol 14:941–950. doi:10.1046/j.1523-1739.2000.98533.x CrossRefGoogle Scholar
  19. Mc Cune B, Mefford MJ (1999) Multivariate analysis of ecological data. Version 4.25. MjM Software, Gleneden BeachGoogle Scholar
  20. Motta R (2002) Old-growth forests and silvicolture in the Italian Alps: the case-study of the strict reserve of Paneveggio (TN). Plant Biosystems 136:223–232. doi:10.1080/11263500212331351129 Google Scholar
  21. Motta R, Nola P, Piussi P (2002) Long-term investigations in a strict forest reserve in the eastern Italian Alps: spatio-temporal origin and development in two multi-layered subalpine stands. J Ecol 90:495–507. doi:10.1046/j.1365-2745.2002.00685.x CrossRefGoogle Scholar
  22. Nascimbene J, Nimis PL, Marini L (2006) Testing indicators of epiphytic lichen diversity: a case study in N Italy. Biodivers Conserv 16:3377–3383. doi:10.1007/s10531-006-9084-z CrossRefGoogle Scholar
  23. Nascimbene J, Marini L, Nimis PL (2007) Influence of forest management on epiphytic lichens in a temperate beech forest of northern Italy. For Ecol Manag 247:43–47. doi:10.1016/j.foreco.2007.04.011 CrossRefGoogle Scholar
  24. Nimis PL (2003) Checklist of the lichens of Italy 2.0. University of Trieste, Dept. of Biology, IN2.0/2, (
  25. Nimis PL, Martellos S (2003) A second checklist of the lichens of Italy with a thesaurus of synonyms. Monografia 4. Mus. Reg. Sc. Nat, AostaGoogle Scholar
  26. Nordén B, Paltto H, Götmark F et al (2007) Indicators of biodiversity, what do they indicate?—Lessons for conservation of cryptogams in oak-rich forest. Biol Conserv 135:369–379. doi:10.1016/j.biocon.2006.10.007 CrossRefGoogle Scholar
  27. Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4:355–364. doi:10.1111/j.1523-1739.1990.tb00309.x CrossRefGoogle Scholar
  28. Öckinger E, Niklasson M, Nilsson S (2005) Is local distribution of the epiphytic lichen Lobaria pulmonaria limited by dispersal capacity or habitat quality? Biodivers Conserv 14:759–773. doi:10.1007/s10531-004-4535-x CrossRefGoogle Scholar
  29. Peterson E, Mc Cune B (2001) Diversity and succession of epiphytic macrolichen communities in low-elevation managed conifer forests in Western Oregon. J Veg Sci 12:511–524. doi:10.2307/3237003 CrossRefGoogle Scholar
  30. Pykälä J (2003) Effects of new forestry practices on rare epiphytic macrolichens. Conserv Biol 18:831–838. doi:10.1111/j.1523-1739.2004.00210.x CrossRefGoogle Scholar
  31. Quinn GP, Keough MJ (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, CambridgeGoogle Scholar
  32. Rinn F (1996) TSAP Reference Manual. Version 3.0. HeidelbergGoogle Scholar
  33. Rolstad J, Rolstad E (1999) Does tree age predict the occurrence and abundance of Usnea longissima in multi-aged submontane Picea abies stands? Lichenologist 31:613–625Google Scholar
  34. Scheidegger C, Groner U, Keller C et al (2002a) Biodiversity assessment tools—Lichens. In: Nimis PL, Scheidegger C, Wolseley P (eds) Monitoring with lichens, Monitoring lichens. Kluwer, NATO Science Series, Earth and Envir., Ser. 7, pp 359–365Google Scholar
  35. Scheidegger C, Dietrich M, Frei M (2002b) Licheni epifiti. In: Scheidegger C, Clerc P et al (eds) Lista Rossa delle specie minacciate in Svizzera: licheni epifiti e terricoli. Ed. Ufficio Federale dell’Ambiente, Foreste e Paesaggio UFAFP, Berna, Istituto federale di ricerca WSL, Birmensdorf, Conservatoire et Jardin botaniques de la Ville de Genève CJBG. L’ambiente in pratica, UFAFP -Serie, pp 27–73Google Scholar
  36. Selva SB (2002) Indicator species—restricted taxa approach in coniferous and hardwood forests of northeastern America. In: Nimis PL, Scheidegger C, Wolseley P (eds) Monitoring with lichens, Monitoring lichens. Kluwer, NATO Science Series, Earth and Envir., Ser. 7, pp 349–357Google Scholar
  37. Stofer S, Catalayud V, Ferretti M et al (2003) Epiphytic Lichen Monitoring within the EU/ICP Forests Biodiversity Test-Phase on Level II plots. http//
  38. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. The University of Chicago Press, ChicagoGoogle Scholar
  39. Swetnam TW, Thompson MA, Sutherland EK (1985) Using dendrochronology to measure radial growth of defoliated trees. Agriculture Handbook. USDA, Forest Service Washington, DCGoogle Scholar
  40. Ter Braak CJF, Šmilauer P (2002) CANOCO Reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, USAGoogle Scholar
  41. Thor G (1998) Red-listed lichens in Swedwn: habitats, threats, protection, and indicator value in boreal coniferous forests. Biodivers Conserv 7:59–72. doi:10.1023/A:1008807729048 CrossRefGoogle Scholar
  42. Tibell L (1992) Crustose lichens as indicators of forest continuity in boreal coniferous forests. Nord J Bot 12:427–450. doi:10.1111/j.1756-1051.1992.tb01325.x CrossRefGoogle Scholar
  43. Uliczka H, Angelstam P (1999) Occurrence of epiphytic macrolichens in relation to tree species and age in managed boreal forest. Ecography 22:396–405. doi:10.1111/j.1600-0587.1999.tb00576.x CrossRefGoogle Scholar
  44. Will-Wolf S, Esseen PA, Neitlich P (2002) Monitoring biodiversity and ecosystem function: forests. In: Nimis PL, Scheidegger C, Wolseley P (eds) Monitoring with lichens, Monitoring lichens. Kluwer, NATO Science Series, Earth and Envir., Ser. 7, pp 203–222Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Juri Nascimbene
    • 1
  • Lorenzo Marini
    • 2
  • Renzo Motta
    • 3
  • Pier Luigi Nimis
    • 1
  1. 1.Department of BiologyUniversity of TriesteTriesteItaly
  2. 2.Department of Environmental Agronomy and Crop ProductionUniversity of PadovaPadovaItaly
  3. 3.Department AGROSELVITERUniversity of TorinoTurinItaly

Personalised recommendations