Biodiversity and Conservation

, Volume 18, Issue 3, pp 507–527

Arthropods in biodiversity hotspots: the case of the Phytoseiidae (Acari: Mesostigmata)

Original Paper


The biodiversity hotspot concept was defined by Myers in 1988 to determine priority areas for conservation. They have high endemism levels and have lost more than 70% of their original vegetated area. To date, there is little information on arthropod diversity in these zones. This work focuses on the biodiversity of the Phytoseiidae (Acari), one of the best known among the order Mesostigmata, in these threatened areas. These mites are usually predators and they are worldwide spread. Geographic distribution of phytoseiids in 27 biodiversity hostspots was assessed from data of the last world catalogue published in 2004. One thousand two hundred and thirty species are reported from at least one hotspot (62% of the total species number) and 604 species (30% of the total species number) are endemic to the 27 hotspots considered. The number of reports/publication in hotspot areas (2.6) is higher than in non-hotspot zones (1.5). Hotspots areas could be thus considered as a great reservoir of the Phytoseiidae diversity, just as they are for vertebrates and plants. Correlations between plant, vertebrate, mite diversity and endemism, as well as congruence rates between endemism levels of these three organisms suggest that the biodiversity patterns of plants and vertebrates mirror well those of the Phytoseiidae (both for endemicity and species richness). More intense conservation efforts in biodiversity hotspots would thus be assumed to affect plant and vertebrate biodiversity, as already known, but also arthropod biodiversity, as it was assumed. These results further support thus the importance of these zones in biodiversity conservation, even for organisms like mites, very small and poorly studied in this regards. More data on arthropods are, however, required to confirm these preliminary observations.


Biodiversity Hotspots Mites Phytoseiidae Conservation Arthropods 


  1. Agrawal AA (1997) Do leaf domatia mediate a plant mutualism? An experimental test of the effects on predators and herbivores. Ecol Entomol 22:371–376. doi:10.1046/j.1365-2311.1997.00088.x CrossRefGoogle Scholar
  2. Agrawal AA, Karban R (1997) Domatia mediate plant–arthropod mutualism. Nature 387:562–563. doi:10.1038/42384 CrossRefGoogle Scholar
  3. Arruda Filho GP, Moraes GJ (2003) Stigmaeidae Mites (Acari: Raphignathoidea) from Arecaceae of the Atlantic Forest in São Paulo State, Brazil. Neotrop Entomol 32(1):49–57. doi:10.1590/S1519-566X2003000100007 CrossRefGoogle Scholar
  4. Brooks TM, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor C (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923. doi:10.1046/j.1523-1739.2002.00530.x CrossRefGoogle Scholar
  5. Cabrero-Sañudo FJ, Lobo JM (2003) Estimating the number of species not yet described and their characteristics: the case of Western Palaearctic dung beetle species (Coleoptera, Scarabaeoidea). Biodivers conserv 12:147–166CrossRefGoogle Scholar
  6. Castro TMMG, Moraes GJ (2007) Mite diversity on plants of different families found in the Brazilian Atlantic forest. Neotrop Entomol 36(5):774–782PubMedGoogle Scholar
  7. Chant DA, McMurtry JA (2003a) A review of the subfamilies Amblyseiinae: part II. Neoseiulini new tribe. Int J Acarol 29:3–46Google Scholar
  8. Chant DA, McMurtry JA (2003b) A review of the subfamilies Amblyseiinae (Acari: Phytoseiidae): Part II. The tribe Kampimodromini. Int J Acarol 29:179–224Google Scholar
  9. Chant DA, McMurtry JA (2004a) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part III. The tribe Amblyseiini Wainstein, subtribe Amblyseiina N. subtribe. Int J Acarol 30:171–228Google Scholar
  10. Chant DA, McMurtry JA (2004b) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part IV. The tribe Amblyseiini Wainstein, subtrive Arrenoseiina Chant and McMurtry. Int J Acarol 30:291–312Google Scholar
  11. Chant DA, McMurtry JA (2005a) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part V. Tribe Amblyseiini, subtribe Proprioseiopsina Chant and McMurtry. Int J Acarol 31:3–22Google Scholar
  12. Chant DA, McMurtry JA (2005b) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part VI. The tribe Euseiini N. tribe, subtribes Typhlodromalina, N. subtribe, Euseiina N. subtribe and Ricoseiina N. subtribe. Int J Acarol 31:187–224Google Scholar
  13. Chant DA, McMurtry JA (2005c) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part VII. Typhlodromipsini n. tribe. Int J Acarol 31:315–340Google Scholar
  14. Chant DA, McMurtry JA (2006a) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part VIII. The tribes Macroseiini Chant, Denmark and Baker, Phytoseiulini n. tribe, Africoseiulini n. tribe and Indoseiulini Ehara and Amano. Int J Acarol 32:13–25Google Scholar
  15. Chant DA, McMurtry JA (2006b) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part IX. An overview. Int J Acarol 32:125–152Google Scholar
  16. Das A, Krishnaswamy J, Bawa KS, Kiran MC, Srinivas V, Kumar NS, Karanth KU (2006) Prioritisation of conservation areas in the Western Ghats, India. Biol Conserv 133(1):16–31. doi:10.1016/j.biocon.2006.05.023 CrossRefGoogle Scholar
  17. Dusbabek F, Literak I, Capek M, Havlicek M (2007) Ascid mites (Acari: Mesitigmata: Ascidae) from Costa Rican hummingbirds (Aves: Trochilidae), with description of three new species and a key to the Proctolaelaps belemensis species group. Zootaxa 1484:51–67Google Scholar
  18. Eken G, Bennun L, Brooks TM, Darwall W, Fishpool LDC, Foster D, Knox D, Langhammer P, Matiku P, Radford E, Salaman P, Sechrest W, Smith ML, Spector S, Tordoff A (2004) Key biodiversity areas as site conservation targets. Bioscience 54:1110–1118. doi:10.1641/0006-3568(2004)054[1110:KBAASC]2.0.CO;2 CrossRefGoogle Scholar
  19. Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227. doi:10.1038/35012228 PubMedCrossRefGoogle Scholar
  20. Gebeyehu S, Samways JM (2006) Topographic heterogeneity plays a crucial role for grasshopper diversity in a southern African megabiodiversity hotspot. Biodivers Conserv 15:231–244. doi:10.1007/s10531-004-7065-7 CrossRefGoogle Scholar
  21. Halliday RB (1986) Mites of the Macrocheles glaber group in Australia (Acarina: Macrochelidae). Aust J Zool 34:733–752. doi:10.1071/ZO9860733 CrossRefGoogle Scholar
  22. Halliday RB (2000) The Australian species of Macrocheles (Acarina: Macrochelidae). Invertebr Taxon 14:273–326. doi:10.1071/IT99009 CrossRefGoogle Scholar
  23. Jimenez-Valverde A, Jimenez Mendoza S, Martin Cano J, Munguira ML (2006) Comparing relative model fit of several species-accumulation functions to local Papilionidea and Hesperioidea butterfly inventories of Mediterranean habitats. Biodivers conserv 15:177–190CrossRefGoogle Scholar
  24. Kelly JA, Samways JM (2003) Diversity and conservation of forest-floor arthropods on a small Seychelles Island. Biodivers Conserv 12:1793–1813. doi:10.1023/A:1024161722449 CrossRefGoogle Scholar
  25. Klimov PB, O’Connor BM (2007) Ancestral area analysis of Chaetodactylid mites (Acari: Chaetodactylidae) with description of a new early derivative genus and six new species from the Neotropics. Ann Entomol Soc Am 100(6):810–829. doi:10.1603/0013-8746(2007)100[810:AAAOCM]2.0.CO;2 CrossRefGoogle Scholar
  26. Klompen H, Lekveishvili M, IV BlackW (2007) Phylogeny of parasitiform mites (Acari) based on rRNA. Mol Phyl Evol 43:936–951. doi:10.1016/j.ympev.2006.10.024 CrossRefGoogle Scholar
  27. Kontschán J (2007) Two new Rotundabaloghia Hirschmann, 1975 species from Madagascar (Acari Mesostigmata: Uropodina). Annls hist nat Mus natn Hung 99:171–176Google Scholar
  28. Kostiainen TS, Hoy MA (1996) The Phytoseiidae as biological control agents of pest mites and insects. A bibliography. Monograph 17, University of Florida, Agricultural Experiment Station, pp 355Google Scholar
  29. Kreiter S, Tixier M-S (2006) A new genus and a new species of Phytoseiid mites (Acari: Mesostigmata) from Southern Tunisia with analysis and discussion on its phylogenetic position. Zootaxa 1237:1–18Google Scholar
  30. Kreiter S, Tixier M-S, Croft BA, Auger P, Barret D (2002) Plants and leaf characteristics influencing the predaceous mite, Kampimodromus aberrans (Oudemans) in habitats surrounding vineyards (Acari: Phytoseiidae). Environ Entomol 31:648–660CrossRefGoogle Scholar
  31. Lofego AC, Moraes GJ (2006) Ácaros (Acari) Associados a Mirtáceas (Myrtaceae) em Áreas de Cerrado no Estado de São Paulo com Análise Faunística das Famílias Phytoseiidae e Tarsonemidae. Neotrop Entomol 35(6):731–746. doi:10.1590/S1519-566X2006000600003 PubMedCrossRefGoogle Scholar
  32. Lund MP, Rahbek C (2002) Cross-taxon congruence in complementarity and conservation of temperate biodiversity. Anim Conserv 5:163–171. doi:10.1017/S1367943002002226 CrossRefGoogle Scholar
  33. Margules CR, Usher MB (1981) Criteria used in assessing wildlife conservation potential: a review. Biol Conserv 21:79–109. doi:10.1016/0006-3207(81)90073-2 CrossRefGoogle Scholar
  34. McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321. doi:10.1146/annurev.ento.42.1.291 PubMedCrossRefGoogle Scholar
  35. Meier R, Dikow T (2004) Significance of specimen databases from taxonomic revisions for estimating and mapping the global species diversity of invertebrates and repatriating reliable specimen data. Conserv Biol 8(2):478–488. doi:10.1111/j.1523-1739.2004.00233.x CrossRefGoogle Scholar
  36. Mittermeier RA, Myers N, Thomsen JB (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12:516–520. doi:10.1046/j.1523-1739.1998.012003516.x CrossRefGoogle Scholar
  37. Mittermeier RA, Mittermeier CG, Brooks TM, Pilgrim JD, Konstant WR, da Fonseca GAB, Kormos C (2003) Wilderness and biodiversity conservation. Proc Natl Acad Sci USA 100:10309–10313. doi:10.1073/pnas.1732458100 PubMedCrossRefGoogle Scholar
  38. Mittermeier RA, Robles Gil P, Hoffman M, Pilgrim J, Brooks T, Goettsch Mittermeier C, Lamoreux J, da Fonseca GAB (2005) Hotspots revisited: earth’s biologically richest and most threatened terrestrial ecoregions.
  39. de Moraes GJ, McMurtry JA, Denmark HA (1986) A catalog of the mite family Phytoseiidae. References to taxonomy, synonymy, distribution and habitat. EMBRAPA—DDT, Brasilia, p 353Google Scholar
  40. Moraes GJ, McMurtry JA, Mineiro JLC (2003) A new genus and species of phytoseiid mite from Brazil. Int J Acarol 29:47–54CrossRefGoogle Scholar
  41. de Moraes GJ, McMurtry JA, Denmark HA, Campos CB (2004) A revised catalog of the mite family Phytoseiidae. Zootaxa 434:1–494Google Scholar
  42. Moritz C, Richardson KS, Ferrier S, Monteith GB, Stanisic J, Williams SE, Whiffin T (2001) Biogeographical concordance and efficiency of taxon indicators for establishing conservation priority in a tropical rainforest biota. Proc R Soc Lond B Biol Sci 268(1479):1875–1881. doi:10.1098/rspb.2001.1713 CrossRefGoogle Scholar
  43. Myers N (1988) Threatened biotas: hostspots in tropical forests. Environmentalist 8:187–208. doi:10.1007/BF02240252 PubMedCrossRefGoogle Scholar
  44. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501 PubMedCrossRefGoogle Scholar
  45. Nelder MP, Adler PH, Kachvoryan EA (2005) Do gut symbiotes reflect the endemism of their host black flies (Diptera: Simuliidae) in the Caucasus of Armenia? J Biogeogr 32(8):1333–1341Google Scholar
  46. O’Dowd DJ, Pemberton RW (1998) Leaf domatia and foliar mite abundance in broad-leaf deciduous forest of North Asia. Am J Bot 85:70–78. doi:10.2307/2446556 CrossRefGoogle Scholar
  47. O’Dowd DJ, Willson MF (1989) Leaf domatia and mites on Australasian plants: ecological and evolutionary implications. Biol J Lin Soc 37:191–236Google Scholar
  48. O’Dowd DJ, Willson MF (1997) Leaf domatia and the distribution and abundance of foliar mites in broad-leaf deciduous forest in Wisconsin. Am Midl Nat 137:337–348. doi:10.2307/2426853 CrossRefGoogle Scholar
  49. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Lamoreux JF, Ricketts TH, Itoua I, Wettengel WW, Kura Y, Hedao P, Kassem K (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11):933–938. doi:10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 CrossRefGoogle Scholar
  50. Pawar SS, Birand AC, Ahmed MF, Sengupta S, Shankar Raman TR (2007) Conservation biogeography in North-East India: hierarchical analysis of cross-taxon distributional congruence. Divers Distrib 13(1):53–65Google Scholar
  51. Prendergast JR, Quinn RM, Lawton JH, Eversham BC, Gibbon DW (1993) Rare species the coincidence of diversity hostpots and conservation strategies. Nature 365:335–337. doi:10.1038/365335a0 CrossRefGoogle Scholar
  52. Ragusa S (2003) Description of a new genus and of two new species of phytoseiid mites (Parasiformes, Phytoseiidae) collected in Chile. Acarologia 43:337–344Google Scholar
  53. Reid WV (1998) Biodiversity hotspots. Trends Ecol Evol 13(7):275–280. doi:10.1016/S0169-5347(98)01363-9 CrossRefGoogle Scholar
  54. Reyers B, van Jaarsveld AS, Krüger M (2000) Complementarity as a biodiversity indicator strategy. Proc R Soc Lond Ser B Biol Sci 267(1442):1471–2954CrossRefGoogle Scholar
  55. Rodriguez LO, Young KR (2000) Biological diversity of Peru: determining priority areas for conservation. Ambio 29:329–337. doi:10.1639/0044-7447(2000)029[0329:BDOPDP]2.0.CO;2 CrossRefGoogle Scholar
  56. Shahabaddin SchulzeCH, Tscharntke T (2005) Changes of dung beetle communities from rainforests towards agroforestry systems and annual cultures in Sulawesi (Indonesia). Biodivers Conserv 14:863–877CrossRefGoogle Scholar
  57. Sihvonen P, Siljander M (2005) Species diversity and geographical distribution of Scopulini moths (Lepidoptera: Geometridae, Sterrhinae) on a world-wide scale. Biodiver Conserv 14:703–721. doi:10.1007/s10531-004-3921-8 CrossRefGoogle Scholar
  58. Silva ES, Moraes GJ, Krantz GW (2004) Diversity of edaphic Rhodacaroid Mites (Acari: Mesostigmata: Rhodacaroidea) in natural ecosystems in the state of São Paulo, Brazil. Neotrop Entomol 33(4):547–555Google Scholar
  59. Spector S (2002) Biogeographic crossroads as priority areas for biodiversity conservation. Conserv Biol 16(6):1480–1487. doi:10.1046/j.1523-1739.2002.00573.x CrossRefGoogle Scholar
  60. StatSoft France (2005) STATISTICA (logiciel d’analyse de données), version 7.1.
  61. Thompson GG, Withers PC (2003) Effect of richness and relative abundance on the shape of the species accumulation curve. Aust Ecol 28:355–360. doi:10.1046/j.1442-9993.2003.01294.x CrossRefGoogle Scholar
  62. Tixier M-S, Kreiter S, Moraes GJ (2008) Biogeographic distribution of the mites of the family Phytoseiidae (Acari: Mesostigmata). Biol J Lin Soc 93:845–856. doi:10.1111/j.1095-8312.2007.00937.x CrossRefGoogle Scholar
  63. Walter D, Proctor H (1999) Mites, Ecology, evolution and behaviour. CABI publishing, Wallingford, UK, p 322Google Scholar
  64. Walter DE, Halliday RB, Lindquist EE (1993) A review of the genus Asca (Acarina: Ascidae) in Australia, with descriptions of three new leaf-inhabiting species. Invertebr Taxon 7:1327–1347. doi:10.1071/IT9931327 CrossRefGoogle Scholar
  65. Williams P, Faith D, Manne L, Sechrest W, Preston C (2005) Complementarity analysis: mapping the performance of surrogates for biodiversity. Biol Conserv 128(2):253–264. doi:10.1016/j.biocon.2005.09.047 CrossRefGoogle Scholar
  66. Willis KJ, Araujo MB, Bennett KD, Figueroa-Rangel B, Froyd CA, Myers N (2007) How can a knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philos Trans R Soc Biol Sci 362:175–186. doi:10.1098/rstb.2006.1977 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Unité Mixte de Recherche no 1062 Centre de Biologie et de Gestion des PopulationsMontpellier SupAgroMontpellier Cedex 01France

Personalised recommendations