Biodiversity and Conservation

, Volume 17, Issue 14, pp 3455–3469 | Cite as

Butterfly monitoring in Europe: methods, applications and perspectives

  • Chris A. M. van Swaay
  • Piotr Nowicki
  • Josef Settele
  • Arco J. van Strien
Original Paper

Abstract

Since the first Butterfly Monitoring Scheme in the UK started in the mid-1970s, butterfly monitoring in Europe has developed in more than ten European countries. These schemes are aimed to assess regional and national trends in butterfly abundance per species. We discuss strengths and weaknesses of methods used in these schemes and give examples of applications of the data. A new development is to establish supra-national trends per species and multispecies indicators. Such indicators enable to report against the target to halt biodiversity loss by 2010. Our preliminary European Grassland Butterfly Indicator shows a decline of 50% between 1990 and 2005. We expect to develop a Grassland Butterfly Indicator with an improved coverage across European countries. We see also good perspectives to develop a supra-national indicator for climate change as well as an indicator for woodland butterflies.

Keywords

Biodiversity Climate change Indicators Nature management Population trends Transect counts 

References

  1. Balmford A, Bennun L, Ten Brink B, Cooper D, Côté IM, Crane P, Dobson AP, Dudley N, Dutton I, Green RE, Gregory RD, Harrison J, Kennedy ET, Kremen C, Leader Williams N, Lovejoy TE, Mace P, May RM, Mayaux P, Morling P, Phillips J, Redford K, Ricketts TH, Rodriguez JP, Sanjayan MA, Schei PJ, Van Jaarsveld AS, Walther BA (2005) The convention on biological diversity’s 2010 target. Science 307:212–213PubMedCrossRefGoogle Scholar
  2. Brereton T, Warren MS (2005) The use of transect monitoring 2: assessing the impacts of conservation policy and management on butterfly populations. In: Warren M, Pullin A (organizers) Lepidoptera as indicators of biodiversity conservation. 5th international symposium, Southampton University, 8th–10th April 2005Google Scholar
  3. Brown JA, Boyce MS (1998) Line transect sampling of Karner blue butterflies (Lycaeides melissa samuelis). Environ Ecol Stat 5:81–91CrossRefGoogle Scholar
  4. Buckland ST, Magurran AE, Green RE, Fewster RM (2005) Monitoring change in biodiversity through composite indices. Philos Trans R Soc Lond B Biol Sci 360:243–254PubMedCrossRefGoogle Scholar
  5. De Heer M, Kapos V, Ten Brink BJE (2005) Biodiversity trends in Europe: development and testing of a species trend indicator for evaluating progress towards the 2010 target. Philos Trans R Soc Lond B Biol Sci 360:297–308PubMedCrossRefGoogle Scholar
  6. Dennis RLH, Sparks TH, Hardy BP (1999) Bias in butterfly distribution maps: the effect of sampling effort. J Insect Conserv 3:33–42CrossRefGoogle Scholar
  7. Dennis RLH, Shreeve TG, Isaac NJB, Roy DB, Hardy PB, Fox R, Asher J (2006) The effects of visual apparency on bias in butterfly recording and monitoring. Biol Conserv 128:486–492CrossRefGoogle Scholar
  8. European Environment Agency (2007) Halting the loss of biodiversity by 2010: proposal for a first set of indicators to monitor progress in Europe. Office for Official Publications of the European Communities. http://reports.eea.europa.eu. Cited 6 Dec 2007
  9. Gaston KJ (1991) The magnitude of global insect species richness. Conserv Biol 5:283–296CrossRefGoogle Scholar
  10. Gregory RD, Van Strien AJ, Vorisek P, Gmelig Meyling AW, Noble DG, Foppen RPB, Gibbons DW (2005) Developing indicators for European birds. Philos Trans R Soc Lond B Biol Sci 360:269–288PubMedCrossRefGoogle Scholar
  11. Gregory RD, Vorisek P, Van Strien AJ, Gmelig Meyling AW, Jiguet F, Fornasari L, Reif J, Chylarecki P, Burfield IJ (2007) Population trends of widespread woodland birds in Europe. Ibis 49(s2):78–97CrossRefGoogle Scholar
  12. Gregory RD, Vorisek P, Noble DG, Van Strien AJ, Pazderová A, Eaton ME, Gmelig Meyling AW, Joys A, Foppen RPB, Burfield IJ (2008) The generation and use of bird population indicators in Europe. Bird Conserv Int 18:223–244CrossRefGoogle Scholar
  13. Groombridge B (1992) Global biodiversity: status of the Earth’s living resources. Chapman & Hall, LondonGoogle Scholar
  14. Hambler C, Speight MR (1996) Extinction rates in British non-marine invertebrates since 1900. Conserv Biol 10:892–896CrossRefGoogle Scholar
  15. Hambler C, Speight MR (2004) Extinction rates and butterflies. Science 305:1563PubMedCrossRefGoogle Scholar
  16. Harker RJ, Shreeve TG (2008) How accurate are single site transect data for monitoring butterfly trends? Spatial and temporal issues identified in monitoring Lasiommata megera. J Insect Conserv 12:125–133CrossRefGoogle Scholar
  17. Heliölä J, Kuussaari M (2005) How many counts are needed? Effect of sampling effort on observed species numbers of butterflies and moths in transect counts. In: Kühn E, Feldmann R, Thomas JA, Settele J (eds) Studies on the ecology and conservation of butterflies in Europe. Vol. 1: general concepts and case studies. Pensoft, Sofia, pp 83–84Google Scholar
  18. Henry P-Y, Lengyel S, Nowicki P, Julliard R, Clobert J, Čelik T, Gruber B, Schmeller DS, Babij V, Henle K (2008) Integrating ongoing biodiversity monitoring: potential benefits and methods. Biodivers Conserv (this volume). doi:10.1007/s10531-008-9417-1
  19. Henry P-Y, Manil L, Cadi A, Julliard R (2005) Two national initiatives for butterfly monitoring in France. In: Kühn E, Thomas JA, Feldmann R, Settele J (eds) Studies on the ecology and conservation of butterflies in Europe. Vol. 1: general concepts and case studies. Pensoft, Sofia, 85 ppGoogle Scholar
  20. Kéry M, Plattner M (2007) Species richness estimation and determinants of species detectability in butterfly monitoring programmes. Ecol Entomol 32:53–61CrossRefGoogle Scholar
  21. Kühn E, Feldmann R, Thomas JA, Settele J (2005) Studies on the ecology and conservation of butterflies in Europe. Vol. 1: general concepts and case studies. Pensoft, Sofia, 123 ppGoogle Scholar
  22. Kühn E, Feldmann R, Harpke A, Hirneisen N, Musche M, Leopold P, Settele J (2008) Getting the public involved into butterfly conservation—lessons learned from a new monitoring scheme in Germany. Israel J Ecol Evol 54:89–103CrossRefGoogle Scholar
  23. Maes D, Van Swaay CAM (1997) A new methodology for compiling national red Lists applied to butterflies (Lepidoptera, Rhopalocera) in Flanders (N-Belgium) and The Netherlands. J Insect Conserv 1:113–124CrossRefGoogle Scholar
  24. May RM (1988) How many species are there on earth? Science 241:1441–1449PubMedCrossRefGoogle Scholar
  25. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall, LondonGoogle Scholar
  26. Mulder CT, Aldenberg D, De Zwart D, Van Wijnen HJ, Breure AM (2005) Evaluating the impact of pollution on plant–Lepidoptera relationships. Environmetrics 16:357–373. doi:10.1002/env.706 CrossRefGoogle Scholar
  27. Nowicki P, Richter A, Glinka U, Holzschuh A, Toelke U, Henle K, Woyciechowski M, Settele J (2005) Less input same output–simplified approach for population size assessment in Lepidoptera. Popul Ecol 47:203–212CrossRefGoogle Scholar
  28. Nowicki P, Settele J, Henry P-Y, Woyciechowski M (2008) Butterfly monitoring methods: the ideal and the real world. Israel J Ecol Evol 54:69–88CrossRefGoogle Scholar
  29. Oostermeijer G, Van Swaay CAM (1998) The relationship between butterflies and environmental indicator values: a tool for conservation in a changing landscape. Biol Conserv 86:271–280CrossRefGoogle Scholar
  30. Pannekoek J, Van Strien AJ (2005) TRIM 3 manual. Trends and indices for monitoring data. CBS, Statistics Netherlands, Voorburg, Netherlands. (freely available via www.ebcc.info)
  31. Pellet J (2008) Seasonal variation in detectability of butterflies surveyed with Pollard walks. J Insect Conserv 12:155–162CrossRefGoogle Scholar
  32. Pollard E (1977) A method for assessing change in the abundance of butterflies. Biol Conserv 12:115–132CrossRefGoogle Scholar
  33. Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation: the British Butterfly Monitoring Scheme. Conservation biology series No. 1. Chapman & Hall, LondonGoogle Scholar
  34. Pollard E, Hall ML, Bibby TJ (1986) Monitoring the abundance of butterflies 1976–1985. Research and Survey in Nature Conservation Series No. 2. Nature Conservancy Council, PeterboroughGoogle Scholar
  35. Pollock KH, Nichols JD, Simons TR, Farnsworth GL, Bailey LL, Sauer JR (2002) Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13:105–119CrossRefGoogle Scholar
  36. Rothery P, Roy DB (2001) Application of generalized additive models to butterfly transect count data. J Appl Stat 28:897–909CrossRefGoogle Scholar
  37. Roy DB, Sparks TH (2000) Phenology of British butterflies and climate change. Glob Change Biol 6:407–416CrossRefGoogle Scholar
  38. Roy DB, Rothery P, Brereton T (2005) The design of a systematic survey scheme to monitor butterflies in the United Kingdom. In: Kühn E, Feldmann R, Thomas JA, Settele J (eds) Studies on the ecology and conservation of butterflies in Europe. Vol. 1: general concepts and case studies. Pensoft, Sofia, pp 102–105Google Scholar
  39. Roy DB, Rothery P, Brereton T (2007) Reduced-effort schemes for monitoring butterfly populations. J Appl Ecol 44:993–1000CrossRefGoogle Scholar
  40. Schmeller D, Gruber B, Bauch B, Henle K (2006) EuMon–Arten- und Lebensraum-Monitoring in Europa. Naturschutz und Landschaftsplanung 39:384–385Google Scholar
  41. Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I (in press) Climate change can cause spatial mismatch of trophically interacting species. EcologyGoogle Scholar
  42. Settele J (1998) Metapopulationsanalyse auf Rasterdatenbasis - Modellgestützte Analyse von Metapopulationsparametern und naturschutzfachliche Umsetzung im Landschaftsmaßstab, erläutert am Beispiel von Tagfaltern. Teubner, Leipzig/Stuttgart. 130 ppGoogle Scholar
  43. Settele J, Andrick U, Pistorius EM (1992) Zur Bedeutung von Trittsteinbiotopen und Biotopverbund in der Geschichte - das Beispiel des Hochmoorperlmutterfalters (Boloria aquilonaris Stichel 1908) und anderer Moorvegetation bewohnender Schmetterlinge in der Pfalz (SW-Deutschland). Nota lepidopterologica, Supplementum No. 4 (Proc. 7.SEL-Kongreß, Lunz/Österreich 1990), pp 18–31Google Scholar
  44. Settele J, Hammen V, Hulme P, Karlson U, Klotz S, Kotarac M, Kunin W, Marion G, O’Connor M, Petanidou T, Peterson K, Potts S, Pritchard H, Pysek P, Rounsevell M, Spangenberg J, Steffan-Dewenter I, Sykes M, Vighi M, Zobel M, Kühn I (2005) ALARM–Assessing large-scale environmental risks for biodiversity with tested methods. GAIA-Ecol Perspect Sci Soc 14(1):69–72Google Scholar
  45. Settele J, Dover J, Dolek M, Konvicka M (2009) Butterflies of European ecosystems: impact of land use and options for conservation management. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, CambridgeGoogle Scholar
  46. Shreeve TG (1984) Habitat selection, male location, and microclimatic constraints on activity of the speckled wood butterfly Pararge aegeria (L.) (Lepidoptera: Satyridae). Oikos 42:371–377CrossRefGoogle Scholar
  47. Soldaat L, Visser H, Van Roomen M, Van Strien AJ (2007) Smoothing and trend detection in waterbird monitoring data using structural time-series analysis and the Kalman filter. J Ornithol 148(suppl 2):351–357CrossRefGoogle Scholar
  48. Stefanescu C, Penuelas J, Filella I (2003) Effects of climate change on the phenology of butterflies in the northwest Mediterranean Basin. Glob Change Biol 9:1494–1506CrossRefGoogle Scholar
  49. Sutherland WJ (2006) Ecological census techniques, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  50. Telfer MG, Preston CD, Rothery P (2002) A general method for measuring relative change in range size from biological atlas data. Biol Conserv 107:99–109CrossRefGoogle Scholar
  51. Thomas JA (1983) A quick method for estimating butterfly numbers during surveys. Biol Conserv 27:195–211CrossRefGoogle Scholar
  52. Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos Trans R Soc Lond B Biol Sci 360:339–357PubMedCrossRefGoogle Scholar
  53. Thomas CD, Abery JCG (1995) Estimating rates of butterfly decline form distribution maps: the effects of scale. Biol Conserv 73:59–65CrossRefGoogle Scholar
  54. Thomas JA, Clarke RT (2004) Extinction rates and butterflies–response. Science 305:1563–1564CrossRefGoogle Scholar
  55. Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881PubMedCrossRefGoogle Scholar
  56. Van Strien AJ, Plantenga WF, Soldaat LL, Van Swaay CAM, WallisDeVries MF (2008) Bias in phenology assessments based on first appearance data of butterflies. Oecologia. doi: 10.1007/s00442-008-0959-4
  57. Van Swaay CAM (1990) An assessment of the changes in butterfly abundance in The Netherlands during the 20th Century. Biol Conserv 52(4):287–302CrossRefGoogle Scholar
  58. Van Swaay CAM (2007) Workshop Development of the methodology for a European butterfly indicator. Report VS2007.006, De Vlinderstichting, WageningenGoogle Scholar
  59. Van Swaay CAM, Van Strien AJ (2005) Using butterfly monitoring data to develop a European grassland butterfly indicator. In: Kühn E, Thomas JA, Feldmann R, Settele J (eds) Studies on the ecology and conservation of Butterflies in Europe. Vol. 1: general concepts and case studies. Pensoft, Sofia, pp 106–108Google Scholar
  60. Van Swaay CAM, Warren MS (1999) Red data book of European butterflies (Rhopalocera). Nature and Environment, No. 99. Council of Europe, StrasbourgGoogle Scholar
  61. Van Swaay CAM, Warren MS (eds) (2003) Prime butterfly areas in Europe: priority sites for conservation. National Reference Centre for Agriculture, Nature and Fisheries, Ministry of Agriculture, Nature Management and Fisheries, The NetherlandsGoogle Scholar
  62. Van Swaay CAM, Plate CL, Van Strien A (2002) Monitoring butterflies in the Netherlands: how to get unbiased indices. In: Proc Exper Appl Entomol NEV Amsterdam, vol 13. pp 21–27Google Scholar
  63. Van Swaay CAM, Warren MS, Lois G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10:189–209CrossRefGoogle Scholar
  64. WallisDeVries MF, Van Swaay CAM (2006) Global warming and excess nitrogen may induce butterfly decline by microclimatic cooling. Global Change Biology 12(9):1620–1626CrossRefGoogle Scholar
  65. Zonneveld C (1991) Estimating death rates from transect counts. Ecol Entomol 16:115–121CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Chris A. M. van Swaay
    • 1
    • 2
  • Piotr Nowicki
    • 3
  • Josef Settele
    • 4
    • 2
  • Arco J. van Strien
    • 5
  1. 1.De Vlinderstichting – Dutch Butterfly ConservationWageningenThe Netherlands
  2. 2.Butterfly Conservation EuropeWageningenThe Netherlands
  3. 3.Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
  4. 4.Department of Community EcologyUFZ - Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
  5. 5.Statistics NetherlandsVoorburgThe Netherlands

Personalised recommendations