Biodiversity and Conservation

, 17:3431 | Cite as

High resolution satellite imagery for tropical biodiversity studies: the devil is in the detail

Original Paper


While high resolution satellite remote sensing has been hailed as a very useful source of data for biodiversity assessment and monitoring, applications have been more developed in temperate areas. The biodiverse tropics offer a challenge of an altogether different magnitude for hyperspatial and hyperspectral remote sensing. This paper examines issues related to hyperspatial and hyperspectral remotely sensed imagery, which constitutes one of the most potentially powerful yet underutilized sources of for tropical research on biodiversity. Hyperspatial data with their increased pixel resolution are possibly best suited at facilitating the accurate location of features such as tree canopies, but less suited to the identification of aspects such as species identity, particularly when spatial resolution becomes too fine and pixels are smaller than the size of the object (e.g., tree canopy) being identified. Hyperspectral data on the other hand, with their high spectral resolution, can be used to record information pertaining to a range of critical plant properties related to species identity, and can be very effective used for discriminating tree species in tropical forests, despite the greater complexity of such environments. There remains a glaring gap in the easy availability of hyperspectral and hyperspatial satellite data in the tropics due to reasons of cost, data coverage, and security restrictions. Stimulating discussion on the applications of this powerful, but underutilized tool by ecologists, is the first step in promoting a more extensive use of such data for ecological studies in tropical biodiversity rich areas.


Biodiversity Hyperspatial data Hyperspectral data Monitoring Remote sensing Satellite imagery Tropics 



We would like to thank the editors and three anonymous referees for their useful comments, and the Society in Science: Branco Weiss fellowship for financial assistance to HN.


  1. Carlson KM, Asner GP, Hughes RF, Ostertag R, Martin RE (2007) Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests, NY, Print. Ecosystems 10:536–549. doi: 10.1007/s10021-007-9041-z CrossRefGoogle Scholar
  2. Clark M, Roberts DA, Clark DB (2005) Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens Environ 96:375–398. doi: 10.1016/j.rse.2005.03.009 CrossRefGoogle Scholar
  3. Cochrane MA (2000) Using vegetation reflectance variability for species level classification of hyperspectral data. Int J Remote Sens 21:2075–2087. doi: 10.1080/01431160050021303 CrossRefGoogle Scholar
  4. Curran PJ (1989) Remote sensing of foliar chemistry. Remote Sens Environ 30:271–278. doi: 10.1016/0034-4257(89)90069-2 CrossRefGoogle Scholar
  5. Dormann CF (2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob Ecol Biogeogr 16:129–138. doi: 10.1111/j.1466-8238.2006.00279.x CrossRefGoogle Scholar
  6. Duro DC, Coops NC, Wulder MA, Han T (2007) Development of a large area monitoring system driven by remote sensing. Prog Phys Geogr 31:235–260. doi: 10.1177/0309133307079054 CrossRefGoogle Scholar
  7. Fairbanks DHK, McGwire KC (2004) Patterns of floristic richness in vegetation communities of California: regional scale analysis with multi-temporal NDVI. Glob Ecol Biogeogr 13:221–235. doi: 10.1111/j.1466-822X.2004.00092.x CrossRefGoogle Scholar
  8. Foody GM, Cutler MEJ (2003) Tree biodiversity in protected and logged Bornean tropical rain forests and its measurement by satellite remote sensing. J Biogeogr 30:1053–1066Google Scholar
  9. Fraser CS, Dial G, Grodecki J (2006) Sensor orientation via RPCs. ISPRS J Photogramm Remote Sens 60:182–194. doi: 10.1016/j.isprsjprs.2005.11.001 CrossRefGoogle Scholar
  10. Fuller DO (2005) Remote detection of invasive Melaleuca trees (Melaleuca quinquenervia) in South Florida using multispectral IKONOS imagery. Int J Remote Sens 26:1057–1063CrossRefGoogle Scholar
  11. Geist HJ, Lambin EF (2002) Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52:143–150. doi: 10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2 CrossRefGoogle Scholar
  12. Gillespie TW (2006) Predicting woody-plant species richness in tropical dry forests: a case study from South Florida, USA. Ecol Appl 15:27–37. doi: 10.1890/03-5304 CrossRefGoogle Scholar
  13. Gillespie TW, Foody GM, Rocchini D, Giorgi AP, Saatchi S (2008) Measuring and modelling biodiversity from space. Prog Phys Geogr 32:203–221. doi: 10.1177/0309133308093606 CrossRefGoogle Scholar
  14. Goetz S (2007) Crisis in Earth observation. Science 315:1767. doi: 10.1126/science.1142466 PubMedCrossRefGoogle Scholar
  15. Hernández-Stefanoni JL, Dupny JM (2007) Mapping species density of trees, shrubs and vines in a tropical forest, using field measurements, satellite multispectral imagery and spatial interpolation. Biodivers Conserv 16:3817–3833. doi: 10.1007/s10531-007-9182-6 CrossRefGoogle Scholar
  16. Im J, Rhee J, Jensen JR, Hodgson ME (2007) An automated binary change detection model using a calibration approach. Remote Sens Environ 106:89–105. doi: 10.1016/j.rse.2006.07.019 CrossRefGoogle Scholar
  17. Innes JL, Koch B (1998) Forest biodiversity and its assessment by remote sensing. Glob Ecol Biogeogr Lett 7:397–419. doi: 10.2307/2997712 CrossRefGoogle Scholar
  18. Jakubauskas ME, Price KP (1997) Empirical relationships between structural and spectral factors of Yellowstone Lodgepole Pine forests. Photogramm Eng Remote Sens 63:1375–1381Google Scholar
  19. Johansen K, Coops NC, Gergel SE, Stange Y (2007) Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification. Remote Sens Environ 110:29–44. doi: 10.1016/j.rse.2007.02.014 CrossRefGoogle Scholar
  20. Kalacksa M, Sanchez-Azofeifa GA, Rivard B, Caelli T, White HP, Calvo-Alvarado JC (2007) Ecological fingerprinting of ecosystem sucession: estimating secondary tropical dry forest structure and spectroscopy. Remote Sens Environ 108:82–96. doi: 10.1016/j.rse.2006.11.007 CrossRefGoogle Scholar
  21. Kark S, Levin N, Phinn S (2008) Global environmental priorities: making sense of remote sensing: reply to TREE Letter: satellites miss environmental priorities by Loarie et al. (2007). Trends Ecol Evol 23:181–182. doi: 10.1016/j.tree.2008.01.001 PubMedCrossRefGoogle Scholar
  22. Kayitakire F, Hamel C, Defourny P (2006) Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery. Remote Sens Environ 102:390–401. doi: 10.1016/j.rse.2006.02.022 CrossRefGoogle Scholar
  23. Kerr JT, Ostrovsky M (2003) From space to species: ecological applications for remote sensing. Trends Ecol Evol 18:299–305. doi: 10.1016/S0169-5347(03)00071-5 CrossRefGoogle Scholar
  24. Laba M, Downs R, Smith S, Welsh S, Neider C, White S et al (2008) Mapping invasive wetland plants in the Hudson River National Estuarine Research Reserve using quickbird satellite imagery. Remote Sens Environ 112:286–300. doi: 10.1016/j.rse.2007.05.003 CrossRefGoogle Scholar
  25. Lassau SA, Cassis G, Flemons PKJ, Wilkie L, Hochuli DF (2005) Using high-resolution multi-spectral imagery to estimate habitat complexity in open-canopy forests: can we predict ant community patterns? Ecography 28:495–504. doi: 10.1111/j.0906-7590.2005.04116.x CrossRefGoogle Scholar
  26. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673. doi: 10.2307/1939924 CrossRefGoogle Scholar
  27. Levin N, Shmida A, Levanoni O, Tamari H, Kark S (2007) Predicting mountain plant richness and rarity from space using satellite-derived vegetation indices. Divers Distrib 13:692–703CrossRefGoogle Scholar
  28. Ling Y, Ehlers M, Usery EL, Madden M (2007) FFT-enhanced IHS transform method for fusing high-resolution satellite images. ISPRS J Photogramm Remote Sens 61:381–392. doi: 10.1016/j.isprsjprs.2006.11.002 CrossRefGoogle Scholar
  29. Loarie SR, Joppa LN, Pimm SL (2007) Satellites miss environmental priorities. Trends Ecol Evol 22:630–632. doi: 10.1016/j.tree.2007.08.018 PubMedCrossRefGoogle Scholar
  30. Martin ME, Aber JD (1997) High spectral resolution remote sensing of forest canopy lignin, nitrogen, and ecosystem processes. Ecol Appl 7:431–443. doi: 10.1890/1051-0761(1997)007[0431:HSRRSO]2.0.CO;2 CrossRefGoogle Scholar
  31. Mehner H, Cutler M, Fairbairn D, Thompson G (2004) Remote sensing of upland vegetation: the potential of high spatial resolution satellite sensors. Glob Ecol Biogeogr 13:359–369. doi: 10.1111/j.1466-822X.2004.00096.x CrossRefGoogle Scholar
  32. Nagendra H (2001) Using remote sensing to assess biodiversity. Int J Remote Sens 22:2377–2400. doi: 10.1080/01431160117096 CrossRefGoogle Scholar
  33. Nagendra H, Gadgil M (1999) Satellite imagery as a tool for monitoring species diversity: an assessment. J Appl Ecol 36:388–397Google Scholar
  34. Nagendra H, Pareeth S, Sharma B, Schweik CM, Adhikari KA (2008) Forest fragmentation and regrowth in an institutional mosaic of community, government and private ownership in Nepal. Landsc Ecol 23:41–54. doi: 10.1007/s10980-007-9162-y CrossRefGoogle Scholar
  35. Nichol J, Wong MS (2007) Remote sensing of urban vegetation life form by spectral mixture analysis of high-resolution IKONOS satellite images. Int J Remote Sens 28:985–1000. doi: 10.1080/01431160600784176 CrossRefGoogle Scholar
  36. Olthof I, Fraser RH (2007) Mapping northern land cover fractions using Landsat ETM+. Remote Sens Environ 107:496–509. doi: 10.1016/j.rse.2006.10.009 CrossRefGoogle Scholar
  37. Ostrom E, Nagendra H (2006) Insights on linking forests, trees, and people from the air, on the ground and in the air. Proc Natl Acad Sci USA 103:19224–19231. doi: 10.1073/pnas.0607962103 PubMedCrossRefGoogle Scholar
  38. Palmer MW, Earls P, Hoagland BW, White PS, Wohlgemuth T (2002) Quantitative tools for perfecting species lists. Environmetrics 13:121–137. doi: 10.1002/env.516 CrossRefGoogle Scholar
  39. Read JM, Clark DB, Venticinque EM, Moreiras MP (2003) Application of merged 1-m and 4-m resolution satellite data to research and management in tropical forests. J Appl Ecol 40:592–600. doi: 10.1046/j.1365-2664.2003.00814.x CrossRefGoogle Scholar
  40. Ricotta C, Avena GC, Volpe F (1999) The influence of principal component analysis on the spatial structure of a multispectral dataset. Int J Remote Sens 20:3367–3376. doi: 10.1080/014311699213712 CrossRefGoogle Scholar
  41. Rocchini D (2007) Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery. Remote Sens Environ 111:423–434. doi: 10.1016/j.rse.2007.03.018 CrossRefGoogle Scholar
  42. Rocchini D, Vannini A (2008) What is up? Testing spectral heterogeneity vs. NDVI relationship by quantile regression. Int J Remote Sens (in press)Google Scholar
  43. Rocchini D, Chiarucci A, Loiselle SA (2004) Testing the spectral variation hypothesis by using satellite multispectral images. Acta Oecol 26:117–120. doi: 10.1016/j.actao.2004.03.008 CrossRefGoogle Scholar
  44. Rocchini D, Andreini Butini S, Chiarucci A (2005) Maximizing plant species inventory efficiency by means of remotely sensed spectral distances. Glob Ecol Biogeogr 14:431–437. doi: 10.1111/j.1466-822x.2005.00169.x CrossRefGoogle Scholar
  45. Sanchez-Azofeifa GA, Castro KL, Rivard B, Kalascka MR, Harriss RC (2003) Remote sensing research priorities in tropical dry forest environments. Biotropica 35:134–142Google Scholar
  46. Small C (2004) The Landsat ETM+ spectral mixing space. Remote Sens Environ 93:1–17. doi: 10.1016/j.rse.2004.06.007 CrossRefGoogle Scholar
  47. Sohn G, Dowman I (2007) Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS J Photogramm Remote Sens 62:43–63. doi: 10.1016/j.isprsjprs.2007.01.001 CrossRefGoogle Scholar
  48. Song C, Woodcock CE (2002) The spatial manifestation of forest succession in optical imagery: the potential of multiresolution imagery. Remote Sens Environ 82:271–284. doi: 10.1016/S0034-4257(02)00045-7 CrossRefGoogle Scholar
  49. Thenkabail PS, Enclona EA, Ashton MA, Legg C, Dieu MJD (2004) Hyperion, IKONOS, ALI and ETM+ sensors in the study of African rainforests. Remote Sens Environ 90:23–43. doi: 10.1016/j.rse.2003.11.018 CrossRefGoogle Scholar
  50. Townsend AR, Asner GP, Cleveland CC (2008) The biogeochemical heterogeneity of tropical forests. Trends Ecol Environ 43(8):424–431. doi: 10.1016/j.tree.2008.04.009 CrossRefGoogle Scholar
  51. Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18:306–314. doi: 10.1016/S0169-5347(03)00070-3 CrossRefGoogle Scholar
  52. Verlinden A, Masogo R (1997) Satellite remote sensing of habitat suitability for ungulates and ostrich in the Kalahari of Botswana. J Arid Environ 35:563–574. doi: 10.1006/jare.1996.0174 CrossRefGoogle Scholar
  53. Wagner HH (2003) Spatial covariance in plant communities: integrating ordination, geostatistics, and variance testing. Ecology 84:1045–1057. doi: 10.1890/0012-9658(2003)084[1045:SCIPCI]2.0.CO;2 CrossRefGoogle Scholar
  54. Wu J, Wang D, Bauer ME (2005) Image-based atmospheric correction of quickbird imagery of Minnesota cropland. Remote Sens Environ 99:315–325. doi: 10.1016/j.rse.2005.09.006 CrossRefGoogle Scholar
  55. Wulder MA, Hall RJ, Coops NC, Franklin SE (2004) High spatial resolution remotely sensed data for ecosystem characterization. Bioscience 54:511–521. doi: 10.1641/0006-3568(2004)054[0511:HSRRSD]2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Ashoka Trust for Research in Ecology and the EnvironmentBangaloreIndia
  2. 2.Center for the Study of Institutions, Population, and Environmental ChangeIndiana UniversityBloomingtonUSA
  3. 3.TerraData environmetrics, Dipartimento di Scienze Ambientali “G. Sarfatti”Università di SienaSienaItaly

Personalised recommendations