Biodiversity and Conservation

, Volume 18, Issue 1, pp 151–166 | Cite as

Distribution of pteridophyte communities along environmental gradients in Central Amazonia, Brazil

  • Gabriela ZuquimEmail author
  • Flávia R. C. Costa
  • Jefferson Prado
  • Ricardo Braga-Neto
Original Paper


Extrapolation of local abundance–environment relationships to broader scales provides species distribution models used for conservation planning. We investigated the importance of environmental heterogeneity and geographic distance on pteridophyte species spatial distribution on 38 plots of 250 × 2.5 m distributed over 90 km2 in Central Amazon. Inclusion of canopy openness in our models increased the capacity of predicting community composition even under the narrow range of canopy openness found in our plots. Nevertheless, there was still a large amount of unexplained variance (55–65%). The response of the community to the light gradient was hierarchical and we did not find evidences of light partitioning. Most species were concentrated in low light plots but a few common and abundant occurred along the entire gradient. Soil properties were the major determinants of community composition. Contrary to similar studies, slope was not a good predictor of pteridophyte community composition, indicating that this relationship may be site-specific. There was no correlation between floristic distances and geographic distances. We concluded that mesoscale turnover is low, although locally environmental variation determines high turnover of species. Studies among different Amazonian physiognomies tend to find high levels of beta-diversity. However, coarse comparisons can not reveal subtle patterns that are relevant for biodiversity conservation planning. This study found some important changes on pteridophyte community within the same type of forest, mainly related to environmental heterogeneity, even in narrow ranges of environmental variation.


Beta diversity Canopy openness Dispersal limitation Environmental heterogeneity Ferns Soil characteristics Tropical forest Turnover Understorey 



Biological Dynamics of Forest Fragments Project

INPA (The portuguese acronym for National Institute of Amazonian Research)

Instituto Nacional de Pesquisas da Amazônia


Inventory method that accommodates two sampling scales, Rapid Assessment surveys (RAP) and Long-Term Ecological Research (PELD, the Brazilian acronym for LTER)


Coordenação de Aperfeiçoamento de Pessoal de Nível Superior


Principal coordinates analysis


Analyses of variance


Global positioning system



We would like to thank many field assistants for their invaluable help, especially Ocírio Juruna, Osmaíldo Ferreira Costa and José Tenaçol Andes Junior. Maria Luziene and Tânia Pimentel provided support on laboratorial soil analyses and Marina Antongiovanni helped with Fig. 1. This work is part of the first author’s master dissertation at INPA. CAPES provided the postgraduate scholarship. Financial support came from Biological Dynamics of Forest Fragments Project, Long-Term Ecological Research, Fundação O Boticário de Proteção à Natureza, and Fundação Vitória Amazônica. Alexandre Adalardo de Oliveira, Bruce Nelson, Nigel Pitman and William E. Magnusson improved early drafts of this paper. This is publication 518 from the Biological Dynamics of Forest Fragments Project’s technical series.


  1. Ayob A, Nasrulhaq-Boyce A, Barakbah SS, Mohamed H (1996) Some photosynthetic characteristics of an extreme shade tropical fern Teratophyllum rotundifoliatum (R. Bonap.) Holtt. In: Camus JM, Gibby M, Johns RJ (eds) Pteridology in perspective. Kew, LondGoogle Scholar
  2. Balmford A, Gaston KJ (1999) Why biodiversity surveys are good value. Nature 398:204–205. doi: 10.1038/18339 CrossRefGoogle Scholar
  3. Belbin L (1992) PATN: pattern analysis package. CSIRO, CamberraGoogle Scholar
  4. Brown N, Jennings S, Wheeler P, Nabe-Nielsen J (2000) An improved method for the rapid assessment of forest understorey light environments. J Appl Ecol 37:1044–1053. doi: 10.1046/j.1365-2664.2000.00573.x CrossRefGoogle Scholar
  5. Chauvel A, Lucas Y, Boulet R (1987) On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brasil. Experientia 43:234–240. doi: 10.1007/BF01945546 CrossRefGoogle Scholar
  6. Chazdon RL, Fetcher N (1984) Photosynthetic light environments in a lowland tropical rainforest in Costa Rica. J Ecol 72:553–564. doi: 10.2307/2260066 CrossRefGoogle Scholar
  7. Chazdon RL, Pearcy RW, Lee DW, Fetcher N (1996) Photosynthetic responses of tropical forest plants to contrasting light environments. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman and Hall, NYGoogle Scholar
  8. Clark DB (2002) Los factores edáficos y la distribución de las plantas. In: Guariguata M, Catan G (eds) Ecología y Conservación de Bosques Neotropicales. Ediciones LUR, CartagoGoogle Scholar
  9. Condit R, Pitman N, Leigh EG Jr, Chave J, Terborgh J, Foster RB et al (2002) Beta diversity in tropical forest trees. Science 295:666–669. doi: 10.1126/science.1066854 PubMedCrossRefGoogle Scholar
  10. Costa FRC, Magnusson WE, Luizão RC (2005) Mesoscale distribution patterns of Amazonian understorey herbs in relation to topography, soil and watersheds. J Ecol 93:863–878. doi: 10.1111/j.1365-2745.2005.01020.x CrossRefGoogle Scholar
  11. Duivenvoorden JF, Svenning JC, Wright SJ (2002) Beta diversity in tropical forests. Science 295:636–637. doi: 10.1126/science.295.5555.636 PubMedCrossRefGoogle Scholar
  12. Embrapa (1999) Sistema Brasileiro de classificação de solos. Embrapa Solos, RJGoogle Scholar
  13. Engelbrecht BMJ, Kursar TA, Tyree MT (2005) Drought effects on seedling survival in a tropical moist forest. Trees-Struct Funct 19:312–321Google Scholar
  14. Ferrier S, Drielsma M, Manion G, Watson G (2002) Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New SouthWales. II. Community-level modeling. Biodivers Conserv 11:2309–2338. doi: 10.1023/A:1021374009951 CrossRefGoogle Scholar
  15. Fine PVA, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665. doi: 10.1126/science.1098982 PubMedCrossRefGoogle Scholar
  16. Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, NYGoogle Scholar
  17. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models? Ecol Lett 8:993–1009. doi: 10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  18. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186. doi: 10.1016/S0304-3800(00)00354-9 CrossRefGoogle Scholar
  19. Hopkins MJG (2007) Modelling the known and unknown plant biodiversity of the Amazon Basin. J Biogeogr 34:1400–1411. doi: 10.1111/j.1365-2699.2007.01737.x CrossRefGoogle Scholar
  20. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, NJGoogle Scholar
  21. Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler B et al (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283:554. doi: 10.1126/science.283.5401.554 PubMedCrossRefGoogle Scholar
  22. Jones MM, Tuomisto H, Clark DB, Olivas P (2006) Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns. J Ecol 94:181–195. doi: 10.1111/j.1365-2745.2005.01071.x CrossRefGoogle Scholar
  23. Karst J, Gilbert B, Lechowicz MJ (2005) Fern community assembly: The roles of chance and the environment at local and intermediate scale. Ecology 86:2473–2486. doi: 10.1890/04-1420 CrossRefGoogle Scholar
  24. Kramer KU, Schneller JJ, Wollenweber E (1995) Farne und farnverwandte, erste auflage. Thieme Verlag, StuttgartGoogle Scholar
  25. Kruijt B, Malhi Y, Lloyd J, Nobre AD, Miranda AC, Pereira MGP et al (2000) Turbulence statistics above and within two Amazon Rain Forest Canopies. Bound-Layer Meteorol 94:297–331. doi: 10.1023/A:1002401829007 CrossRefGoogle Scholar
  26. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  27. Legendre P, Dale MRT, Fortin M-J, Gurevitch J, Hohn M, Myers D (2002) The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25:601–615. doi: 10.1034/j.1600-0587.2002.250508.x CrossRefGoogle Scholar
  28. MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modeling—inferring patterns and dynamics of species occurrence. Academic Press, San DiegoGoogle Scholar
  29. Magnusson WE, Lima AP, Luizão RCC, Luizão F, Costa FRC, Castilho CV, et al (2005) RAPELD: a modification of the Gentry method for biodiversity surveys in long-term ecological research sites. Biota Neotropica 5
  30. Margules CR, Pressey RL, Williams PH (2002) Representing biodiversity: data and procedures for identifying priority areas for conservation. J Biosci 27:309–326. doi: 10.1007/BF02704962 PubMedCrossRefGoogle Scholar
  31. Mehltreter K, Rojas P, Palácios-Rios M (2003) Moth larvae-damaged giant leather-fern Acrostichum danaeifolium as host for secondary colonization by ants. Amer Fern J 93:49–55CrossRefGoogle Scholar
  32. Mertens J (2004) The characterization of selected physical and chemical soil properties of the surface soil layer in the ‘Reserva Ducke’, Manaus, Brazil, with emphasis on their spatial distribution. Bachelor thesis, Humboldt University, BerlinGoogle Scholar
  33. Montgomery RA, Chazdon RL (2002) Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia 131:165–174Google Scholar
  34. Nelson BW, Fereira AC, da Silva MF, Kawasaki ML (1990) Endemism centres, refugia and botanical collection density in Brazilian Amazonia. Nature 345:714–716. doi: 10.1038/345714a0 CrossRefGoogle Scholar
  35. Page C (2002) Ecological strategies in fern evolution: a neopteridological overview. Rev Palaeobot Palynol 119:1–33. doi: 10.1016/S0034-6667(01)00127-0 CrossRefGoogle Scholar
  36. Pitman NCA, Terborgh JW, Miles R, Silman PNV, Neill DA, Cerón CE et al (2001) Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 83:2101–2117CrossRefGoogle Scholar
  37. RADAMBRASIL (1978) Levantamento de Recursos Naturais, vol 1–18. Ministério das Minas e Energia. Departamento Nacional de Produção Mineral, Rio de JaneiroGoogle Scholar
  38. Ranal MA (1995) Estabelecimento de pteridófitas em mata mesófila semidecídua do Estado de São Paulo. 2. Natureza dos substratos. Rev Bras Biol 55:583–594Google Scholar
  39. Roxburgh JR, Kelly D (1995) Uses and limitations of hemispherical photography for estimating forest light environments. New Zeal J Ecol 19:213–217Google Scholar
  40. Ruokolainen K, Tuomisto H (2002) Beta-diversity in tropical forests. Science 297:1439. doi: 10.1126/science.297.5586.1439a PubMedCrossRefGoogle Scholar
  41. Sonoike K (1996) Photoinhibition of photosystem I: Its physiological significance in the chilling sensitivity of pants. Plant Cell Physiol 37:239–247Google Scholar
  42. ter Steege H, Pitman N, Sabatier D, Castellanos H, van der Hout P, Daly DC et al (2003) A spatial model of tree a-diversity and tree density for the Amazon. Biodivers Conserv 12:2255–2277. doi: 10.1023/A:1024593414624 CrossRefGoogle Scholar
  43. Svenning J-C (1999) Microhabitat specialization in a species-rich palm community in Amazonian Equador. J Ecol 87:55–65. doi: 10.1046/j.1365-2745.1999.00329.x CrossRefGoogle Scholar
  44. Svenning J-C, Engelbrecht BMJ, Kinner DA, Kursar TA, Stallard RF, Wright SJ (2006) The relative roles of environment, history and local dispersal in controlling the distributions of common tree and shrub species in a tropical forest landscape, Panama. J Trop Ecol 22:575–586. doi: 10.1017/S0266467406003348 CrossRefGoogle Scholar
  45. Tuomisto H, Poulsen A (1996) Influence of edaphic specialization on the distribution of pteridophyte in neotropical forests. J Biogeogr 23:283–293. doi: 10.1046/j.1365-2699.1996.00044.x CrossRefGoogle Scholar
  46. Tuomisto H, Ruokolainen K, Yli-Halla M (2003a) Dispersal, environmental, and floristic variation of Western Amazonian forests. Science 299:241–244. doi: 10.1126/science.1078037 PubMedCrossRefGoogle Scholar
  47. Tuomisto H, Ruokolainen K, Aguilar M, Sarmiento A (2003b) Floristic patterns along a 43-km long transect in an Amazonian rain forest. J Ecol 91:743–756. doi: 10.1046/j.1365-2745.2003.00802.x CrossRefGoogle Scholar
  48. Vormisto J, Tuomisto H, Oksanen J (2004) Palm distribution patterns in Amazonian rainforests: what is the role of topographic variation? J Veg Sci 15:485–494. doi: 10.1658/1100-9233(2004)015[0485:PDPIAR]2.0.CO;2 CrossRefGoogle Scholar
  49. Wilkinson L (1998) Systat: the system for statistics. Systat Inc, EvanstonGoogle Scholar
  50. Wolf PG, Schneider H, Ranker T (2001) Geographic distributions of homosporous ferns: does dispersal obscure evidence of vicariance? J Biogeogr 28:263–270. doi: 10.1046/j.1365-2699.2001.00531.x CrossRefGoogle Scholar
  51. Zaniewski AE, Lehmann A, Overton JMC (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecol Modell 157:261–280. doi: 10.1016/S0304-3800(02)00199-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Gabriela Zuquim
    • 1
    Email author
  • Flávia R. C. Costa
    • 1
  • Jefferson Prado
    • 2
  • Ricardo Braga-Neto
    • 1
  1. 1.Instituto Nacional de Pesquisas da AmazôniaCoordenação de Pesquisas em EcologiaManausBrazil
  2. 2.Instituto de BotânicaHerbárioSão Paulo, SPBrazil

Personalised recommendations