Developing a scuba trail vulnerability index (STVI): a case study from a Mediterranean MPA

  • Antonio Di FrancoEmail author
  • Agnese Marchini
  • Pasquale Baiata
  • Marco Milazzo
  • Renato Chemello
Original Paper


Scuba diving is now one of the major form of commercial use of marine protected areas (MPAs) around the world and the control of its potential impacts on the marine environment represents a fundamental key to manage this recreational activity in highly dived areas. A potential tool to tackle such issues has been thought to be the definition of a value of recreational carrying capacity of an area, but this approach has been rarely considered management-effective. Therefore, the first step for effectively managing scuba-diving should be ‘bottom-up’: characterizing the benthic communities potentially affected by diving and evaluating their vulnerability. Aim of this paper is to propose a tool to define an index of vulnerability for dive trails (STVI: scuba trail vulnerability index). This has taken into consideration both physical and biological features of each trail. All the considered features are represented by non-quantitative variables, because either they are purely qualitative or their quantitative measurement is impractical. The management of such qualitative information and its translation into a formal methodology was performed by means of fuzzy logic, which has been repeatedly proposed as a powerful technique to develop indices of environmental quality. The approach adopted in this study provided a useful tool for the preliminary assessment of the potential vulnerability of benthic assemblages to scuba-diving and may represent an alternative method to the assessment of carrying capacity. The application of this index will enable management strategies for potentially reducing the degradation of benthic organisms/assemblages, and allowing a sustainable use of MPAs.


Marine protected areas Diving Vulnerability Fuzzy logic Index 



The authors thank diving owners operating in the Capo Gallo–Isola delle Femmine MPA for collaboration in identifying dive trails. Many thanks are expressed to two anonymous reviewers for critically reviewing an early draft of the manuscript.


  1. Adriaenssens V, De Baets B, Goethals PLM, De Pauw N (2004) Fuzzy rule-based models for decision support in ecosystem management. Sci Total Environ 319:1–12. doi: 10.1016/S0048-9697(03)00433-9 CrossRefPubMedGoogle Scholar
  2. Agardy T, Bridgewater P, Crosby MP, Day J, Dayton PK, Kenchington R et al (2003) Dangerous targets? Unresolved issues and ideological clashes around marine protected areas. Aquat Conserv 13:353–367. doi: 10.1002/aqc.583 CrossRefGoogle Scholar
  3. Angel D, Krost P, Silvert WL (1998) Describing benthic impacts of fish farming with fuzzy sets: theoretical background and analytic methods. J Appl Ichthyol 14:1–8. doi: 10.1111/j.1439-0426.1998.tb00606.x CrossRefGoogle Scholar
  4. Badalamenti F, Ramos A, Voultsiadou E, Sanchez-Lisazo JL, D’Anna G, Pipitone C et al (2000) Cultural and socio-economic impacts of Mediterranean marine protected areas. Environ Conserv 27(2):1–16. doi: 10.1017/S0376892900000163 Google Scholar
  5. Balas CE, Ergin A, Williams AT, Koc L (2004) Marine litter prediction by artificial intelligence. Mar Pollut Bull 48:449–457. doi: 10.1016/j.marpolbul.2003.08.020 CrossRefPubMedGoogle Scholar
  6. Ballantine WJ (1995) Networks of “no take” marine reserves are practical and necessary. In: Shackell NL, Martin Willison JH (eds) Proceedings of the symposium on marine protected areas and sustainable fisheries conducted at the second international conference on science and the management of protected areas. Dalhousie University, Halifax, Canada, pp 12–20Google Scholar
  7. Ballesteros E (1992) Els vegetals i la zonaciò litoral: especies, comunitas i factors que influexien en la seva distribuciò. Arxius de les Seccions de Ciencies CI, Institut d’Estudis Catalans, BarcelonaGoogle Scholar
  8. Barker NHL, Roberts C (2004) Scuba diver behaviour and the management of diving impacts on coral reefs. Biol Conserv 120:481–489. doi: 10.1016/j.biocon.2004.03.021 CrossRefGoogle Scholar
  9. Borja Á, Franco J, Perez V (2000) A marine biotic index to establish the ecological quality of soft-bottoms benthos within European estuarine and coastal environment. Mar Pollut Bull 40:1100–1114. doi: 10.1016/S0025-326X(00)00061-8 CrossRefGoogle Scholar
  10. Borri D, Concilio G, Conte E (1998) A fuzzy approach for modelling knowledge in environmental systems evaluation. Comput Environ Urban 22(3):299–313. doi: 10.1016/S0198-9715(98)00045-3 CrossRefGoogle Scholar
  11. Buckley R (1996) Sustainable tourism: technical issues and information needs. Ann Tourism Res 23(4):925–928. doi: 10.1016/0160-7383(96)00005-9 CrossRefGoogle Scholar
  12. Cecchi E, Balata D, Piazzi L, Serena F (2005) Studio preliminare sull’effetto delle attività subacquee sul popolamento ittico dell’Isola di Giannutri. Atti del Workshop Internazionale “Le attività subacquee nelle Aree Marine Protette e gli impatti sull’ambiente: esperienze mediterranee a confronto”. 17–18 Febbraio 2005, Roma (Italia)Google Scholar
  13. Chadwick-Furman NE (1997) Effects of SCUBA diving on coral reef invertebrates in the U.S. Virgin Islands: implications for the management of diving tourism. In: den Hartog JC (ed) Proceedings of the sixth international conference on coelenterate biology. National Naturistorich Museum, pp 91–100Google Scholar
  14. Chang NB, Chen HW, Ning SK (2001) Identification of river water quality using the fuzzy synthetic evaluation approach. J Environ Manage 63(3):293–305. doi: 10.1006/jema.2001.0483 CrossRefPubMedGoogle Scholar
  15. Chevenet F, Dolédec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshw Biol 31:295–309. doi: 10.1111/j.1365-2427.1994.tb01742.x CrossRefGoogle Scholar
  16. Cocito S, Chiantore M (2004). Monitoring of natural animal populations. In: Gambi MC, Dappiano M (eds) Mediterranean marine benthos: a manual of methods for its sampling and study. Società Italiana di Biologia Marina, pp 309–345Google Scholar
  17. Cocito S, Sgorbini S, Bianchi CN (1998) Aspects of the biology of the bryozoan Pentapora fascialis in the northwestern Mediterranean. Mar Biol (Berl) 131(1):73–82. doi: 10.1007/s002270050298 CrossRefGoogle Scholar
  18. Coma R (1994) Evaluaciòn del metabolismo de dos suspensivoros bentonicos marinos: Orthopyxis crenata y Paramuricea clavata. PhD thesis, Universitat de Barcelona, BarcelonaGoogle Scholar
  19. Coma R, Ribes M, Zabala M, Gili JM (1998) Growth in a modular colonial marine invertebrate. Estuar Coast Shelf Sci 47:459–470CrossRefGoogle Scholar
  20. Coma R, Pola E, Ribes M, Zabala M (2004) Long-term assessment of temperate octocoral mortality patterns, protected vs. unprotected areas. Ecol Appl 14(5):1466–1478. doi: 10.1890/03-5176 CrossRefGoogle Scholar
  21. Davis D, Tisdell C (1995) Recreational scuba-diving and carrying capacity in marine protected areas. Ocean Coast Manage 26:19–40. doi: 10.1016/0964-5691(95)00004-L CrossRefGoogle Scholar
  22. Di Franco A (2007) Valutazione del comportamento di subacquei in immersione e dei suoi effetti sulla componente biotica in una AMP mediterranea. Tesi di laurea specialistica, Università degli Studi di Palermo, p 145Google Scholar
  23. Di Franco A, Baiata P (2006) Selezione ed uso di habitat di subacquei in una AMP mediterranea. Biol Mar Medit 13(2):238–239Google Scholar
  24. Di Franco A, Franzitta G, Graziano M, Milazzo M, Chemello R (2006) Valutazione del comportamento dei subacquei in immersione nell’AMP “Isola di Ustica”. Biol Mar Medit 13(1):707–710Google Scholar
  25. Dixon JA, Fallon Scura L, Van’t Hof T (1993) Meeting ecological and economic goals: marine parks in the Caribbean. Ambio 22:117–125Google Scholar
  26. Enea M, Salemi G (2001) Fuzzy approach to the environmental impact evaluation. Ecol Modell 136:131–147. doi: 10.1016/S0304-3800(00)00380-X CrossRefGoogle Scholar
  27. Estrada R, Camarena T, McCool S, Kooistra D (2004). Assessing the carrying capacity of MPA’s: how many visitors can your MPA hold? MPA’s News 6(2) (
  28. Fränzle O (2006) Complex bioindication and environmental stress assessment. Ecol Indic 6:114–136. doi: 10.1016/j.ecolind.2005.08.015 CrossRefGoogle Scholar
  29. Friedrich C, Fohrer N, Frede H-G (2002) Quantification of soil properties based on external information by means of fuzzy-set theory. J Plant Nutr Soil Sci 165(4):511–516 10.1002/1522-2624(200208)165:4<511::AID-JPLN511>3.0.CO;2-NCrossRefGoogle Scholar
  30. Garrabou J, Sala E, Arcas A, Zabala M (1998) The impact of diving on rocky sublittoral communities: a case study of a bryozoan population. Conserv Biol 12:302–312. doi: 10.1046/j.1523-1739.1998.96417.x CrossRefGoogle Scholar
  31. Guo D, Guo R, Thiart C (2007) Predicting air pollution using fuzzy membership grade Kriging. Comput Environ Urban 31:33–51. doi: 10.1016/j.compenvurbsys.2005.07.006 CrossRefGoogle Scholar
  32. Harriott V, Davis D, Banks S (1997) Recreational diving and its impact in marine protected areas in Eastern Australia. Ambio 26:173–179Google Scholar
  33. Hawkins JP, Roberts CM (1992) Effects of recreational scuba diving on fore-reef slope communities of coral reefs. Biol Conserv 62:171–178. doi: 10.1016/0006-3207(92)91045-T CrossRefGoogle Scholar
  34. Hawkins JP, Roberts CM (1993) Effects of recreational scuba diving on coral reefs: trampling on reef-flat communities. J Appl Ecol 30:25–30. doi: 10.2307/2404267 CrossRefGoogle Scholar
  35. Hawkins JP, Roberts CM (1997) Estimating the carrying capacity of coral reefs for scuba diving. Proceedings of the 8th international coral reef symposium, vol 2. Panama, pp 1923–1926Google Scholar
  36. Hawkins JP, Roberts CM, Van’t Hof T, De Meyer K, Tratalos J, Aldam C (1999) Effects of recreational scuba diving on Caribbean coral and fish communities. Conserv Biol 13(4):888–897CrossRefGoogle Scholar
  37. Hollert H, Heise S, Pudenz S, Bruggemann R, Ahlf W, Braunbeck T (2002) Application of a sediment quality triad and different statistical approaches (Hasse diagrams and fuzzy logic) for the comparative evaluation of small streams. Ecotoxicology 11:311–321. doi: 10.1023/A:1020597019828 CrossRefPubMedGoogle Scholar
  38. Icaga Y (2007) Fuzzy evaluation of water quality classification. Ecol Indic 7:710–718. doi: 10.1016/j.ecolind.2006.08.002 CrossRefGoogle Scholar
  39. Jackson JBC (1979) Morphological strategies of sessile animals. In: Larwood G, Rosen BR (eds) Biology and systematics of colonial organisms. Academic Press, London and New York, pp 499–555Google Scholar
  40. Jørgensen SE (2008) Overview of the model types available for development of ecological models. Ecol Modell 215:3–9. doi: 10.1016/j.ecolmodel.2008.02.041 CrossRefGoogle Scholar
  41. Kampichler C, Platen R (2004) Ground beetle occurrence and moor degradation: modelling a bioindication system by automated decision-tree induction and fuzzy logic. Ecol Indic 4:99–109. doi: 10.1016/j.ecolind.2004.01.001 CrossRefGoogle Scholar
  42. Kulbicki M (1998) How the acquired behaviour of commercial reef fishes may influence the results obtained from visual censuses. J Exp Mar Biol Ecol 222:11–30. doi: 10.1016/S0022-0981(97)00133-0 CrossRefGoogle Scholar
  43. Liddle MJ (1991) Recreation ecology: effects of trampling on plants and corals. Trends Ecol Evol 6(1):13–17. doi: 10.1016/0169-5347(91)90141-J CrossRefGoogle Scholar
  44. Liou S-M, Lo S-L, Hu C-Y (2003) Application of two-stage fuzzy set theory to river quality evaluation in Taiwan. Water Res 37:1406–1416. doi: 10.1016/S0043-1354(02)00479-7 CrossRefPubMedGoogle Scholar
  45. Lloret J, Marin A, Marin-Guirao L, Carreño MF (2006) An alternative approach for managing scuba diving in small marine protected areas. Aquat Conserv 16:579–591. doi: 10.1002/aqc.734 CrossRefGoogle Scholar
  46. Lu R-S, Lo S-L (2002) Diagnosing reservoir water quality using self-organizing maps and fuzzy theory. Water Res 36:2265–2274. doi: 10.1016/S0043-1354(01)00449-3 CrossRefPubMedGoogle Scholar
  47. Marchini A, Occhipinti-Ambrogi A (2007) TWIN: a two-levels index to evaluate ecological quality status in lagoon environments by means of hard bottom zoobenthos. Chem Ecol 23:455–469. doi: 10.1080/02757540701702751 CrossRefGoogle Scholar
  48. Mendoza GA, Prabhu R (2003) Fuzzy methods for assessing criteria and indicators of sustainable forest management. Ecol Indic 3:227–236. doi: 10.1016/j.ecolind.2003.08.001 CrossRefGoogle Scholar
  49. McCool SF, Lime DW (2001) Tourism carrying capacity: tempting fantasy or useful reality? J Sustain Tour 9:372–388CrossRefGoogle Scholar
  50. Milazzo M, Chemello R, Badalamenti F, Camarda R, Riggio S (2002) The impact of human recreational activities in marine protected areas: what lessons should be learnt in the Mediterranean Sea? Mar Ecol P S Z N I 23(1):280–290. doi: 10.1111/j.1439-0485.2002.tb00026.x CrossRefGoogle Scholar
  51. Milazzo M, Anastasi I, Willis TJ (2006) Recreational fish feeding affects coastal fish behaviour and increases frequency of predation on damselfish (Chromis chromis) nests. Mar Ecol Prog Ser 310:165–172CrossRefGoogle Scholar
  52. Plathong S, Inglis GJ, Huber ME (2000) Effects of self-guided snorkelling trails on corals in tropical Marine Park. Conserv Biol 14:1821–1830. doi: 10.1046/j.1523-1739.2000.99301.x CrossRefGoogle Scholar
  53. Riedler C, Jandl R (2002) Identification of degraded forest soils by means of a fuzzy-logic based model. J Plant Nutr Soil Sci 165:320–325 10.1002/1522-2624(200206)165:3<320::AID-JPLN320>3.0.CO;2-YCrossRefGoogle Scholar
  54. Rouphael AB, Inglis GJ (1997) Impacts of recreational scuba diving at sites with different reef topographies. Biol Conserv 82:329–336. doi: 10.1016/S0006-3207(97)00047-5 CrossRefGoogle Scholar
  55. Rouphael AB, Inglis GJ (2001) “Take only photographs and leave only footprints”? An experimental study of the impacts of underwater photographers on coral reef dive sites. Biol Conserv 100:281–287. doi: 10.1016/S0006-3207(01)00032-5 CrossRefGoogle Scholar
  56. Sala E, Garrabou J, Zabala M (1996) Effects of diver frequentation on Mediterranean sublittoral populations of the bryozoan Pentapora fascialis. Mar Biol (Berl) 126:451–459. doi: 10.1007/BF00354627 CrossRefGoogle Scholar
  57. Silvert W (1997) Ecological impact classification with fuzzy sets. Ecol Modell 96:1–10. doi: 10.1016/S0304-3800(96)00051-8 CrossRefGoogle Scholar
  58. Silvert W (2000) Fuzzy indices of environmental conditions. Ecol Modell 130:111–119. doi: 10.1016/S0304-3800(00)00204-0 CrossRefGoogle Scholar
  59. Stankey GH, Cole DN, Lucas RC, Petersen ME, Frissell SS (1985) The limits of acceptable change (LAC) system for wilderness planning. General Technical Report INT-176. US Department of Agriculture, Forest Service, Intermountain Forest and Range Experimentation Station, Ogden, UTGoogle Scholar
  60. Talge H (1990) Impact of recreational divers on coral reefs in the Florida keys. In: Jaap WC (ed) Diving for science. Proc Amer Acad Underwater Sci, 12th Ann Sci diving symposium. Costa Mesa, California, USA, pp 365–372Google Scholar
  61. Tscherko D, Kandeler E, Bárdossy A (2007) Fuzzy classification of microbial biomass and enzyme activities in grassland soils. Soil Biol Biochem 39:1799–1808. doi: 10.1016/j.soilbio.2007.02.010 CrossRefGoogle Scholar
  62. Ward F 1990 Florida’s coral reefs are imperiled. National Geographic July: 115–132Google Scholar
  63. Wood LJ, Dragicevic S (2007) GIS-based multicriteria evaluation and fuzzy sets to identify priority sites for marine protection. Biodivers Conserv 16:2539–2558. doi: 10.1007/s10531-006-9035-8 CrossRefGoogle Scholar
  64. Woodley JD, Chornesky EA, Clifford PA, Jackson JBC, Kaufman LS, Knowlton N et al (1981) Hurricane Allen’s impact on Jamaican coral reefs. Science 214:749–755. doi: 10.1126/science.214.4522.749 CrossRefPubMedGoogle Scholar
  65. Zacharias MA, Gregr E (2005) Sensitivity and vulnerability in marine environments: an approach to identifying vulnerable marine areas. Conserv Biol 19:86–97. doi: 10.1111/j.1523-1739.2005.00148.x CrossRefGoogle Scholar
  66. Zadeh LA (1965) Fuzzy sets. Inf Contr 8:338–447. doi: 10.1016/S0019-9958(65)90241-X CrossRefGoogle Scholar
  67. Zakai D, Chadwick-Furman NE (2002) Impacts of intensive recreational diving on reef corals at Eilat, northern Red Sea. Biol Conserv 105:179–187. doi: 10.1016/S0006-3207(01)00181-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Antonio Di Franco
    • 1
    • 2
    Email author
  • Agnese Marchini
    • 3
  • Pasquale Baiata
    • 1
  • Marco Milazzo
    • 1
  • Renato Chemello
    • 1
  1. 1.Dip. di EcologiaUniversità di PalermoPalermoItaly
  2. 2.Laboratorio di Zoologia e Biologia Marina, DiSTeBAUniversità di LecceLecceItaly
  3. 3.Dip. di Ecologia del Territorio, Sez. di EcologiaUniversità di PaviaPaviaItaly

Personalised recommendations