Biodiversity and Conservation

, Volume 17, Issue 14, pp 3513–3530 | Cite as

Monitoring crayfish using a mark-recapture method: potentials, recommendations, and limitations

  • Piotr NowickiEmail author
  • Tina Tirelli
  • Rocco Mussat Sartor
  • Francesca Bona
  • Daniela Pessani
Original Paper


Crayfish are regarded as useful indicators of environmental quality and freshwater biodiversity. However, reliable methods for monitoring their populations are needed so that this potential can be fully utilised. We report and discuss methodological aspects of the white-clawed crayfish (Austropotamobius pallipes complex) survey conducted in Piedmont, Italy, with the use of mark-recapture. The results suggest that the method can serve as a convenient tool for estimating the size of crayfish populations and inferring their temporal trends. The two populations investigated appeared closed except for wintertime and July. Consequently, the Robust Design, which is regarded as the most reliable mark-recapture approach, can be easily applied. The minimum effective sampling plan for monitoring purposes should comprise one primary period per year, conducted in the summer–autumn season, and consisting of three capture sessions. If gaining insight into the ecology of the investigated species is the prime objective and sufficient resources are available, the optimal plan should include two primary periods (in spring and the summer–autumn season) of five capture sessions each. Capture sessions need to be separated by roughly 2-week intervals in order to avoid the strong, but short-term, negative effect of capturing crayfish on their recapture chances. As the model without heterogeneity in capture probabilities ensures better estimate precision we recommend that data collected for both sexes are analysed separately. Taking into consideration higher male catchabilities and sex ratio being invariably 1:1, it also seems beneficial to estimate only male numbers and double them to achieve total population sizes.


Austropotamobius pallipes complex Jolly-Seber model Model selection Population size estimation Relative abundance methods Robust design Sampling intensity Survival patterns 



This survey was funded by the Piedmont regional government through the project “Action plan for the crayfish Austropotamobius pallipes complex (Crustacea Decapoda Astacidae) in Piedmont”, while the data analysis was supported by the European Commission within its STREP project EuMon (contract no. 006463). We would like to thank Giulia Bemporad, Luca Buonerba, Livio Favaro, Andrea Forchino, and Valentina Jackson for their help in the fieldwork, and James Brookes for improving the English of the manuscript.


  1. Abrahamsson S (1983) Trappability, locomotion, and diel pattern of activity of the crayfish Astacus astacus and Pacifastacus leniusculus Dana. Freshw Crayfish 5:239–253Google Scholar
  2. Acosta CA, Perry SA (2000) Effective sampling area: a quantitative method for sampling crayfish population in freshwater marshes. Crustaceana 73:425–431. doi: 10.1163/156854000504516 CrossRefGoogle Scholar
  3. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  4. Arnason AN, Mills KH (1981) Bias and loss of precision due to tag loss in Jolly-Seber estimates for mark-recapture experiments. Can J Fish Aquat Sci 38:1077–1095CrossRefGoogle Scholar
  5. Arnason AN, Schwarz CJ (1999) Using POPAN-5 to analyse banding data. Bird Study 46(Suppl):157–168Google Scholar
  6. Baillie SR (1995) Uses of ringing data for the conservation and management of bird populations: a ringing scheme perspective. J Appl Stat 22:967–987. doi: 10.1080/02664769524748 CrossRefGoogle Scholar
  7. Baillie J, Groombridge B (eds) (1996) 1996 IUCN red list of threatened animals. IUCN, GlandGoogle Scholar
  8. Bubb DH, Lucas MC, Timothy J, Thom TJ (2002) Winter movements and activity of signal crayfish Pacifastacus leniusculus in an upland river, determined by radio telemetry. Hydrobiologia 483:111–119. doi: 10.1023/A:1021363109155 CrossRefGoogle Scholar
  9. Bubb DH, Thom TJ, Lucas MC (2006) Movement patterns of the invasive signal crayfish determined by PIT telemetry. Can J Zool 84:1202–1209. doi: 10.1139/Z06-100 CrossRefGoogle Scholar
  10. Byron CJ, Wilson A (2001) Rusty crayfish (Orconectes rusticus) movement within and between habitats in Trout Lake, Vilas County, Wisconsin. J North Am Benthol Soc 20:606–614. doi: 10.2307/1468091 CrossRefGoogle Scholar
  11. Chao A (1989) Estimating population size for sparse data in capture-recapture experiments. Biometrics 45:427–438. doi: 10.2307/2531487 CrossRefGoogle Scholar
  12. Chao A, Lee SM, Jeng SL (1992) Estimation of population size for capture-recapture data when capture probabilities vary by time and individual animal. Biometrics 48:201–216. doi: 10.2307/2532750 PubMedCrossRefGoogle Scholar
  13. Crawford L, Yeomans WE, Adams CE (2006) The impact of introduced signal crayfish Pacifastacus leniusculus on stream invertebrate communities. Aquat Conserv 16:611–621. doi: 10.1002/aqc.761 CrossRefGoogle Scholar
  14. DiStefano RJ, Gale CM, Wagner BA, Zweifel RD (2003) A sampling method to assess lotic crayfish communities. J Crust Biol 23:678–690. doi: 10.1651/C-2364 CrossRefGoogle Scholar
  15. Dorn NJ, Mittelbach GG (1999) More than predator and prey: a review of interactions between fish and crayfish. Vie Milieu 49:229–237Google Scholar
  16. Dorn NJ, Urgelles R, Trexler JC (2005) Evaluating active and passive sampling methods to quantify crayfish density in a freshwater wetland. J North Am Benthol Soc 24:346–356. doi: 10.1899/04-037.1 CrossRefGoogle Scholar
  17. Flowerdew JR, Shore RF, Poulton SMC, Sparks TH (2004) Live trapping to monitor small mammals in Britain. Mammal Rev 34:31–50. doi: 10.1046/j.0305-1838.2003.00025.x CrossRefGoogle Scholar
  18. Fratini S, Zaccara S, Barbaresi S, Grandjean F, Souty-Grosset C, Crosa G et al (2005) Phylogeography of the threatened crayfish (genus Austropotamobius) in Italy: implications for its taxonomy and conservation. Heredity 94:108–118. doi: 10.1038/sj.hdy.6800891 PubMedCrossRefGoogle Scholar
  19. Frisch AJ, Hobbs JPA (2006) Long term retention of internal elastomer tags in a wild population of painted crayfish (Panulirus versicolor [Latreille]) on the Great Barrier Reef. J Exp Mar Biol Ecol 339:104–110. doi: 10.1016/j.jembe.2006.07.016 CrossRefGoogle Scholar
  20. Gherardi F (2006) Crayfish invading Europe: the case study of Procambarus clarkii. Mar Freshw Behav Physiol 39:175–191. doi: 10.1080/10236240600869702 CrossRefGoogle Scholar
  21. Gherardi F, Holdich D (eds) (1999) Crayfish in Europe as alien species: how to make the best of a bad situation? Crustacean Issues, vol 11. Balkema, RotterdamGoogle Scholar
  22. Gherardi F, Souty-Grosset C (eds) (2006) European crayfish as heritage species-linking research and management strategies to conservation and socio-economic development, CRAYNET, vol 4. Bull Fr Pêche Piscic 380–381:1–566Google Scholar
  23. Gherardi F, Barbaresi S, Salvi G (2000) Spatial and temporal patterns in the movement of Procambarus clarkii, an invasive crayfish. Aquat Sci 62:179–193Google Scholar
  24. Gledhill T, Sutcliffe DW, Williams WD (1993) British freshwater Crustacea Malacostraca, 2nd edn. Freshwater Biological Association Scientific Publications 52. Freshwater Biological Association, AmblesideGoogle Scholar
  25. Grandjean F, Frelon-Raimond M, Souty-Grosset C (2002) Compilation of molecular data for the phylogeny of the genus Austropotamobius: one species or several? Bull Fr Peche Piscic 367:671–680CrossRefGoogle Scholar
  26. Guan RZ (1997) An improved method for marking crayfish. Crustaceana 70:641–652. doi: 10.1163/156854097X00104 CrossRefGoogle Scholar
  27. Guan RZ, Wiles PR (1996) Growth, density and biomass of crayfish, Pacifastacus leniusculus, in a British lowland river. Aquat Living Resour 9:265–272. doi: 10.1051/alr:1996030 CrossRefGoogle Scholar
  28. Hicks BJ (2003) Distribution and abundance of fish and crayfish in a Waikato stream in relation to basin area. NZ J Zool 30:149–160Google Scholar
  29. Hockley NJ, Jones JPG, Andriahajaina FB, Manica A, Ranambitsoa EH, Randriamboahary JA (2005) When should communities and conservationists monitor exploited resources? Biodivers Conserv 14:2795–2806. doi: 10.1007/s10531-005-8416-8 CrossRefGoogle Scholar
  30. Holdich DM (2003) Ecology of the white-clawed crayfish Austropotamobius pallipes. Conserving natura 2000 rivers, ecology series no. 1. English Nature, PeterboroughGoogle Scholar
  31. Holdich DM, Lowery RS (eds) (1988) Freshwater crayfish—biology, management and exploitation. Croom Helm, LondonGoogle Scholar
  32. Holdich DM, Reeve ID (1991) The distribution of freshwater crayfish in the British Isles with particular reference to crayfish plague, alien introductions and water quality. Aquat Conserv 1:139–158. doi: 10.1002/aqc.3270010204 CrossRefGoogle Scholar
  33. Hurvich CM, Tsai C (1989) Regression and time series model selection in small samples. Biometrika 76:297–307. doi: 10.1093/biomet/76.2.297 CrossRefGoogle Scholar
  34. Jay D, Holdich DM (1981) The distribution of the crayfish, Austropotamobius pallipes, in British waters. Freshw Biol 11:121–129. doi: 10.1111/j.1365-2427.1981.tb01248.x CrossRefGoogle Scholar
  35. Jones JPG, Andriahajaina FB, Hockley NJ, Balmford A, Ravoahangimalala OR (2005) A multidisciplinary approach to assessing the sustainability of freshwater crayfish harvesting in Madagascar. Conserv Biol 19:1863–1871. doi: 10.1111/j.1523-1739.2005.00267.x CrossRefGoogle Scholar
  36. Jones JPG, Coulson T (2006) Population regulation and demography in a harvested freshwater crayfish from Madagascar. Oikos 112:602–611. doi: 10.1111/j.0030-1299.2006.14301.x CrossRefGoogle Scholar
  37. Julliard R, Jiguet F, Couvet D (2004) Evidence for the impact of global warming on the long-term population dynamics of common birds. Proc Biol Sci 271:490–492. doi: 10.1098/rsbl.2004.0229 CrossRefGoogle Scholar
  38. Kendall WL (1999) Robustness of closed capture-recapture methods to violations of the closure assumption. Ecology 80:2517–2525Google Scholar
  39. Lancia RA, Nichols JD, Pollock KH (1994) Estimating the number of animals in wildlife populations. In: Bookhout TA (ed) Research and management techniques for wildlife and habitats, 5th edn. The Wildlife Society, Bethesda, pp 215–253Google Scholar
  40. Lodge DM, Kershner MW, Aloi JE, Covich AP (1994) Effects of an omnivorous crayfish (Orconectes rusticus) on a freshwater littoral food web. Ecology 75:1265–1281. doi: 10.2307/1937452 CrossRefGoogle Scholar
  41. Lodge DM, Taylor CA, Holdich DM, Skurdal J (2000) Nonindigenous crayfishes threaten North American freshwater biodiversity: lessons from Europe. Fisheries 25:7–20 doi:10.1577/1548-8446(2000)025<0007:NCTNAF>2.0.CO;2CrossRefGoogle Scholar
  42. Lowery RS (1988) Growth, moulting and reproduction. In: Holdich DM, Lowery RS (eds) Freshwater crayfish: biology, management and exploitation. Croom Helm, London, pp 83–113Google Scholar
  43. Maguire I, Erben R, Klobucar GIV, Lajtner J (2002) Year cycle of Austropotamobius torrentium (Schrank) in streams on Medvednica Mountain (Croatia). Bull Fr Peche Piscic 367:943–957CrossRefGoogle Scholar
  44. Maguire I, Hudina S, Erben R (2004) Estimation of noble crayfish (Astacus astacus L.) population size in the Velika Paklenica Stream (Croatia). Bull Fr Peche Piscic 372:353–366. doi: 10.1051/kmae:2004009 CrossRefGoogle Scholar
  45. Marunouchi J, Kusano T, Ueda H (2002) Fluctuation in abundance and age structure of a breeding population of the Japanese brown frog, Rana japonica Gunther (Amphibia, Anura). Zool Sci 19:343–350. doi: 10.2108/zsj.19.343 PubMedCrossRefGoogle Scholar
  46. Menkens GE Jr, Anderson SH (1988) Estimation of small-mammal population size. Ecology 69:1952–1959. doi: 10.2307/1941172 CrossRefGoogle Scholar
  47. Moore JA, Hoare JM, Daugherty CH, Nelson NJ (2007) Waiting reveals waning weight: monitoring over 54 years shows a decline in body condition of a long-lived reptile (tuatara, Sphenodon punctatus). Biol Conserv 135:181–188. doi: 10.1016/j.biocon.2006.10.029 CrossRefGoogle Scholar
  48. Nowicki P, Witek M, Skórka P, Settele J, Woyciechowski M (2005) Population ecology of endangered butterflies Maculinea teleius and M. nausithous and its conservation implications. Popul Ecol 47:193–202. doi: 10.1007/s10144-005-0222-3 CrossRefGoogle Scholar
  49. Nowicki P, Settele J, Henry P-Y, Woyciechowski M (2008) Butterfly monitoring methods: the ideal and the real world. Isr J Ecol Evol 54:69–88CrossRefGoogle Scholar
  50. Nyström P, Brönmark C, Graneli W (1996) Patterns in benthic food webs: a role for omnivorous crayfish? Freshw Biol 36:631–646. doi: 10.1046/j.1365-2427.1996.d01-528.x CrossRefGoogle Scholar
  51. Otis DL, Burnham KP, White DC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildl Monogr 62:1–135Google Scholar
  52. Parkyn SM, Collier KJ, Hicks BJ (2002) Growth and population dynamics of crayfish Paranephrops planifrons in streams within native forest and pastoral land uses. NZ J Mar Freshw 36:847–861Google Scholar
  53. Peay S (2003) Monitoring the White-clawed crayfish Austropotamobius p. pallipes. Conserving natura 2000 rivers, monitoring series no. 1. English Nature, PeterboroughGoogle Scholar
  54. Pintor LM, Soluk DA (2006) Evaluating the non-consumptive, positive effects of a predator in the persistence of an endangered species. Biol Conserv 130:584–591. doi: 10.1016/j.biocon.2006.01.021 CrossRefGoogle Scholar
  55. Pollock KH (1982) A capture-recapture design robust to unequal probabilities of capture. J Wildl Manage 46:757–760. doi: 10.2307/3808569 CrossRefGoogle Scholar
  56. Pollock KH, Nichols JD, Brownie C, Hines JE (1990) Statistical inference for capture recapture experiments. Wildl Monogr 107:1–97Google Scholar
  57. Pollock KH, Yoshizaki J, Fabrizio MC, Schram ST (2007) Factors affecting survival rates of a recovering lake trout population estimated by mark-recapture in Lake Superior, 1969–1996. Trans Am Fish Soc 136:185–194. doi: 10.1577/T05-317.1 CrossRefGoogle Scholar
  58. Rabeni CF, Collier KJ, Parkyn SM, Hicks BJ (1997) Evaluating methods of sampling stream crayfish. NZ J Mar Freshw 31:693–700CrossRefGoogle Scholar
  59. Rexstad EA, Burnham KP (1991) User’s guide for interactive program CAPTURE. Abundance estimation of closed animal populations. Colorado State University, Fort CollinsGoogle Scholar
  60. Reynolds JD (1998) Conservation management of the white-clawed crayfish, Austropotamobius pallipes. Part 1. Irish Wildlife Manuals 1, DublinGoogle Scholar
  61. Reynolds J, Souty-Grosset C (eds) (2003) The endangered native crayfish Austropotamobius pallipes, bioindicator and heritage species, CRAYNET, vol 1. Bull Fr Pêche Piscic 370–371:1–230Google Scholar
  62. Reynolds JD, Gouin N, Pain S, Grandjean F, Demers A, Souty-Grosset C (2001) Irish crayfish populations: ecological survey and preliminary genetic findings. Freshw Crayfish 13:584–594Google Scholar
  63. Robinson CA, Thom TJ, Lucas MC (2000) Ranging behaviour of a large freshwater invertebrate, the white-clawed crayfish Austropotamobius pallipes. Freshw Biol 44:509–521. doi: 10.1046/j.1365-2427.2000.00603.x CrossRefGoogle Scholar
  64. Rodríguez CF, Bécares E, Fernández-Aláez M, Fernández-Aláez C (2005) Loss of diversity and degradation of wetlands as a result of introducing exotic crayfish. Biol Invasions 7:75–85. doi: 10.1007/s10530-004-9636-7 CrossRefGoogle Scholar
  65. Rogowski DL, Stockwell CA (2006) Assessment of potential impacts of exotic species on populations of a threatened species, White Sands pupfish, Cyprinodon tularosa. Biol Invasions 8:79–87. doi: 10.1007/s10530-005-0238-9 CrossRefGoogle Scholar
  66. Rosenthal SK, Stevens SS, Lodge DM (2006) Whole-lake effects of invasive crayfish (Orconectes spp.) and the potential for restoration. Can J Fish Aquat Sci 63:1276–1285. doi: 10.1139/F06-037 CrossRefGoogle Scholar
  67. Santucci F, Iaconelli M, Andreani P, Cianchi R, Nascetti G, Bullini L (1997) Allozyme diversity of European freshwater crayfish of the genus Austropotamobius. Bull Fr Pêche Piscic 347:663–676CrossRefGoogle Scholar
  68. Scalici M, Gibertini G (2005) Can Austropotamobius italicus meridionalis be used as a monitoring instrument in Central Italy? Preliminary observations. Bull Fr Peche Piscic 376–377:613–625CrossRefGoogle Scholar
  69. Schwarz CJ, Arnason AN (1996) A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52:860–873. doi: 10.2307/2533048 CrossRefGoogle Scholar
  70. Schwarz CJ, Seber GAF (1999) Estimating animal abundance. Stat Sci 14:427–456. Review III. doi: 10.1214/ss/1009212521 CrossRefGoogle Scholar
  71. Skalski JR, Robson DS (1992) Techniques for wildlife investigations. Academic Press, San DiegoGoogle Scholar
  72. Skurdal J, Qvenild T, Taugbøl T, Fjeld E (1990) A 6-year study of Thelohania contejeani parasitism of the noble crayfish, Astacus astacus L, in lake Steinsfjorden, SE Norway. J Fish Dis 13:411–415. doi: 10.1111/j.1365-2761.1990.tb00800.x CrossRefGoogle Scholar
  73. Souty-Grosset C, Holdich DM, Noel PY, Reynolds JD, Haffner P (eds) (2006) Atlas of crayfish in Europe. Muséum National d’Histoire Naturelle, ParisGoogle Scholar
  74. Taugbøl T, Skurdal J (1999) The future of native crayfish in Europe—how to make the best of a bad situation? Crustac Issues 11:271–279Google Scholar
  75. Tirelli T, Mussat Sartor R, Bona F, De Biaggi E, Zocco D, Badino G et al Census of Austropotamobius genus in four Districts of Piedmont (Western Italy). Bol Mus Reg Sci Nat Torino (in press)Google Scholar
  76. Usio N, Townsend CR (2004) Roles of crayfish: consequences of predation and bioturbation for stream invertebrates. Ecology 85:807–822. doi: 10.1890/02-0618 CrossRefGoogle Scholar
  77. van Helddingen PJ, Willemse I, Speight MCD (eds) (1996) Background information on the invertebrates of the habitats directive and the bern convention. Part 1-Crustacea, Coleoptera and Lepidoptera. Nature and environment no. 79. Council of Europe Publishing, StrasbourgGoogle Scholar
  78. Webb M, Richardson A (2004) A radio telemetry study of movement in the giant Tasmanian freshwater crayfish, Astacopsis gouldi. Freshw Crayfish 14:197–204Google Scholar
  79. Westman K, Savolainen R (2002) Growth of the signal crayfish, Pacifastacus leniusculus, in a small lake in Finland. Boreal Environ Res 7:53–61Google Scholar
  80. Westman K, Savolainen R, Julkunen M (2002) Replacement of the native crayfish Astacus astacus by the introduced species Pacifastacus leniusculus in a small, enclosed Finnish lake: a 30-year study. Ecography 25:53–73. doi: 10.1034/j.1600-0587.2002.250107.x CrossRefGoogle Scholar
  81. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:120–138Google Scholar
  82. Whitledge GW, Rabeni CF (1997) Energy sources and ecological role of crayfishes in an Ozark stream: insights from stable isotopes and gut analysis. Can J Fish Aquat Sci 54:2555–2563. doi: 10.1139/cjfas-54-11-2555 CrossRefGoogle Scholar
  83. Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, San DiegoGoogle Scholar
  84. Willis TV, Magnuson JJ (2006) Response of fish communities in five north temperate lakes to exotic species and climate. Limnol Oceanogr 51:2808–2820Google Scholar
  85. Wilson KA, Magnuson JJ, Lodge DM, Hill AM, Kratz TK, Perry WL et al (2004) A long-term rusty crayfish (Orconectes rusticus) invasion: dispersal patterns and community change in a north temperate lake. Can J Fish Aquat Sci 61:2255–2266. doi: 10.1139/f04-170 CrossRefGoogle Scholar
  86. Zhang YX, Richardson JS, Negishi JN (2004) Detritus processing, ecosystem engineering and benthic diversity: a test of predator-omnivore interference. J Anim Ecol 73:756–766. doi: 10.1111/j.0021-8790.2004.00849.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Piotr Nowicki
    • 1
    Email author
  • Tina Tirelli
    • 2
  • Rocco Mussat Sartor
    • 2
  • Francesca Bona
    • 2
  • Daniela Pessani
    • 2
  1. 1.Institute of Environmental SciencesJagiellonian UniversityKrakowPoland
  2. 2.Dipartimento di Biologia Animale e dell’UomoUniversity of TurinTorinoItaly

Personalised recommendations