Biodiversity and Conservation

, Volume 17, Issue 14, pp 3551–3558 | Cite as

Cultivation of genetically modified organisms: resource needs for monitoring adverse effects on biodiversity

Original Paper

Abstract

Genetically modified organisms (GMO) in non-European countries are introduced into the agro-environment on large scale with little knowledge of adverse effects on biodiversity. In the European Union (EU) possible effects of GMOs on biodiversity have to be accurately and precisely monitored. Monitoring biodiversity with a high precision is expensive and may only be achieved in close cooperation between GMO monitoring and general biodiversity monitoring. The EuMon project sampled metadata on biodiversity monitoring in Europe. Basing on the metadata, we estimated resource needs for biodiversity monitoring as needed for detecting potential adverse effects of GMOs on biodiversity. On average the analyzed schemes with a potential to detect at least a 5% change of biodiversity monitor 242.6 ± 105.4 sites at 322.6 ± 172.1 person days employing 63 ± 23 persons per year. The time invested in monitoring, given as person days, however, differed greatly between schemes and species groups, so that real manpower might be considerably higher.

Keywords

Biodiversity monitoring Genetically modified organisms Costs Manpower GMO monitoring 

References

  1. Barton JE, Dracup M (2000) Genetically modified crops and the environment. Agron J 92(4):797–803Google Scholar
  2. Berger G, Stachow U, Werner A (2000) Abschätzungen der Auswirkungen transgener Sorten auf Umweltqualitätsziele. Nachhaltige Landwirtschaft und grüne Gentechnik: Ergebnisse zum Forschungsprojekt. BATS, Basel, pp 73–95Google Scholar
  3. Beringer JE (2000) Releasing genetically modified organisms: will any harm outweigh any advantage? J Appl Ecol 37(2):207–214. doi:10.1046/j.1365-2664.2000.00502.x CrossRefGoogle Scholar
  4. Birch ANE, Geoghegan IE, Majerus MEN et al (1999) Tri-trophic interactions involving pest aphids, predatory 2-spot ladybirds and transgenic potatoes expressing snowdrop lectin for aphid resistance. Mol Breed 5:75–83Google Scholar
  5. Borisjuk NV, Borisjuk LG, Logendra S et al (1999) Production of recombinant proteins in plant root exudates. Nat Biotechnol 17:466–469Google Scholar
  6. Caughley G (1980) Analysis of vertebrate populations. Wiley, NYGoogle Scholar
  7. Chamberlain DE, Fuller RJ, Bunce RGH, Duckworth JC, Shrubb M (2000) Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J Appl Ecol 37:717–728. doi:10.1046/j.1365-2664.2000.00548.x CrossRefGoogle Scholar
  8. Cooperrider AY, Boyd RJ, Stuart HR (1986) Inventory and monitoring of wildlife habitat. US Dept. Inter. Bur. Land Manage, Service Centre, DenverGoogle Scholar
  9. Cowgill SE, Danks C, Atkinson HJ (2004) Multitrophic interactions involving genetically modified potatoes, nontarget aphids, natural enemies and hyperparasitoids. Mol Ecol 13(3):639–647. doi:10.1046/j.1365-294X.2004.02078.x PubMedCrossRefGoogle Scholar
  10. Diamand E (1999) Genetically modified organisms and monitoring. J Environ Monit 1(6):108N–110N. doi:10.1039/a908767b PubMedCrossRefGoogle Scholar
  11. Doyle D, Kelso T (2004) Genetically engineered salmon, ecological risk, and environmental policy. Bull Mar Sci 74(3):509–528Google Scholar
  12. EC (2001) Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC. Off J Eur Commun L106:1–38Google Scholar
  13. EC (2002) Council Decision (2002/811/EC) of 3 October 2002 establishing guidance notes supplementing Annex VII to Directive 2001/18/EC of the European Parliament and of the Council on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC. Off J Eur Commun L280:27–36Google Scholar
  14. Firbank LG, Rothery P, May MJ et al (2006) Effects of genetically modified herbicide-tolerant cropping systems on weed seedbanks in two years of following crops. Biol Lett 2(1):140–143. doi:10.1098/rsbl.2005.0390 PubMedCrossRefGoogle Scholar
  15. Gathmann A, Wirooks L, Hothorn LA et al (2006) Impact of Bt maize pollen (MON810) on lepidopteran larvae living on accompanying weeds. Mol Ecol 15(9):2677–2685. doi:10.1111/j.1365-294X.2006.02962.x PubMedCrossRefGoogle Scholar
  16. Gebhard F, Smalla K (1999) Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol Ecol 28(3):261–272. doi:10.1111/j.1574-6941.1999.tb00581.x CrossRefGoogle Scholar
  17. Graef F, Schmidt G, Schroder W et al (2005a) Determining ecoregions for environmental and GMO monitoring networks. Environ Monit Assess 108(1–3):189–203. doi:10.1007/s10661-005-3966-5 PubMedCrossRefGoogle Scholar
  18. Graef F, Zughart W, Hommel B et al (2005b) Methodological scheme for designing the monitoring of genetically modified crops at the regional scale. Environ Monit Assess 111(1–3):1–26. doi:10.1007/s10661-005-8044-5 PubMedCrossRefGoogle Scholar
  19. Gregory RD, van Strien A, Vorisek P et al (2005) Developing indicators for European birds. Philos Trans Roy Soc B Biol Sci 360(1454):269–288. doi:10.1098/rstb.2004.1602 CrossRefGoogle Scholar
  20. Griffiths BS, Geoghegan IE, Robertson WM (2000) Testing genetically engineered potato, producing the lectins GNA and Con A, on non-target soil organisms and processes. J Appl Ecol 37(1):159–170. doi:10.1046/j.1365-2664.2000.00481.x CrossRefGoogle Scholar
  21. Hails RS (2005) Assessing the impact of genetically modified crops on agricultural biodiversity. Minerva Biotecnol 17(1):13–20Google Scholar
  22. Henle K, Schmeller DS Editorial Biodivers Conserv (this issue)Google Scholar
  23. Henle K, Alard D, Clitherow J, Cobb P, Firbank F, Kull T, McCracken D, Moritz RFA, Niemelä J, Rebane M, Wascher D, Watt A, Young J (2008) Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe—a review. Agric Ecosyst Environ 124:60–71. doi:10.1016/j.agee.2007.09.005 CrossRefGoogle Scholar
  24. Henry P-Y, Lengyel S, Nowicki P et al Integrating ongoing biodiversity monitoring: potential benefits and methods. Biodivers Conserv (this issue)Google Scholar
  25. Lu BR, Snow AA (2005) Gene flow from genetically modified rice and its environmental consequences. Bioscience 55(8):669–678. doi:10.1641/0006-3568(2005) 055[0669:GFFGMR]2.0.CO;2 CrossRefGoogle Scholar
  26. McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev 73(2):181–201CrossRefGoogle Scholar
  27. Myhr AI, Traavik T (2002) The precautionary principle: scientific uncertainty and omitted research in the context of GMO use and release. J Agric Environ Ethics 15(1):73–86. doi:10.1023/A:1013814108502 CrossRefGoogle Scholar
  28. Nickson TE, Head GP (1999) Environmental monitoring of genetically modified crops. J Environ Monit 1(6):101N–105N. doi:10.1039/a908763j PubMedCrossRefGoogle Scholar
  29. O’Callaghan M, Glare TR, Burgess EPJ et al (2005) Effects of plants genetically modified for insect resistance on non-target organisms. Annu Rev Entomol 50(1):271–292. doi:10.1146/annurev.ento.50.071803.130352 PubMedCrossRefGoogle Scholar
  30. Pleasants JM, Hellmich RL, Dively GP et al (2001) Corn pollen deposition on milkweeds in and near cornfields. Proc Natl Acad Sci U S A 98(21):11919–11924. doi:10.1073/pnas.211287498 PubMedCrossRefGoogle Scholar
  31. Poppy GM, Sutherland JP (2004) Can biological control benefit from genetically-modified crops? Tritrophic interactions on insect-resistant transgenic plants. Physiol Entomol 29(3):257–268. doi:10.1111/j.0307-6962.2004.00382.x CrossRefGoogle Scholar
  32. Ruf A, Beck L, Dreher P et al (2003) A biological classification concept for the assessment of soil quality: “biological soil classification scheme” (BBSK). Agric Ecosyst Environ 98:263–271. doi:10.1016/S0167-8809(03) 00086-0 CrossRefGoogle Scholar
  33. Saxena D, Flores S, Stotzky G (1999) Transgenic plants—insecticidal toxin in root exudates from Bt corn. Nature 402(6761):480–480PubMedGoogle Scholar
  34. SCBD (2000) Cartagena protocol on biosafety to the convention on biological diversity: text and annexes. Secretariat of the Convention on Biological Diversity, MontrealGoogle Scholar
  35. SCBD (2004) Global biosafety—from concepts to action: decisions adopted by the first meeting of the conference of the parties to the convention on biological diversity serving as the meeting of the parties to the Cartagena protocol on biosafety. Secretariat of the Convention on Biological Diversity, MontrealGoogle Scholar
  36. Schmeller DS, Gruber B, Bauch B et al (2006) EuMon—Arten- und Lebensraum-Monitoring in Europa. Natursch Landschaftspl 39(12):384–385Google Scholar
  37. Schmeller DS, Henry P-Y, Julliard R et al Advantages of volunteer-based biodiversity monitoring in Europe. Conserv Biol (in review)Google Scholar
  38. Schuler TH, Potting RPJ, Denholm I et al (1999) Parasitoid behaviour and Bt plants. Nature 402(6763):750–750Google Scholar
  39. Schuler TH, Denholm I, Clark SJ et al (2004) Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J Insect Physiol 50(5):435–443. doi:10.1016/j.jinsphys.2004.03.001 PubMedCrossRefGoogle Scholar
  40. Sharpe M (1999) Sound science or sound bytes? Europe’s struggle with genetically modified crops. J Environ Monit 1(6):97N–100N. doi:10.1039/a908761c PubMedCrossRefGoogle Scholar
  41. Snow AA (2002) Transgenic crops—why gene flow matters. Nat Biotechnol 20(6):542–542. doi:10.1038/nbt0602-542 PubMedCrossRefGoogle Scholar
  42. Snow AA, Pilson D, Rieseberg LH et al (2003) A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers. Ecol Appl 13(2):279–286. doi:10.1890/1051-0761(2003) 013[0279:ABTRHA]2.0.CO;2 CrossRefGoogle Scholar
  43. Spencer LJ, Snow AA (2001) Fecundity of transgenic wild-crop hybrids of Cucurbita pepo (Cucurbitaceae): implications for crop-to-wild gene flow. Heredity 86:694–702Google Scholar
  44. Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos Trans R Soc B Biol Sci 360(1454):339–357. doi:10.1098/rstb.2004.1585 CrossRefGoogle Scholar
  45. Vieno M, Toivonen T (2005) Report of analysis of observational biodiversity information needs and products to support the European Biodiversity Strategy and parallel activities. European Network for Biodiversity Information (ENBI), Turku, FinlandGoogle Scholar
  46. Wilhelm R, Schiemann J (2006) Does the baseline concept provide appropriate tools for decision making? J Verbr Lebensm 1:75–77. doi:10.1007/s00003-006-0079-1 CrossRefGoogle Scholar
  47. Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. San Diego, Academic PressGoogle Scholar
  48. Wolfenbarger LL, Phifer PR (2000) Biotechnology and ecology—the ecological risks and benefits of genetically engineered plants. Science 290(5499):2088–2093. doi:10.1126/science.290.5499.2088 PubMedCrossRefGoogle Scholar
  49. Wolters V (2001) Biodiversity of soil animals and its function. Eur J Soil Biol 37:3–19. doi:10.1016/S1164-5563(01) 01088-3 CrossRefGoogle Scholar
  50. Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16(8):446–453. doi:10.1016/S0169-5347(01) 02205-4 CrossRefGoogle Scholar
  51. Zhou RH, Zhang ZC, Wu Q et al (1995) Large-scale performance of transgenic tobacco plants resistant to both tobacco mosaic virus and cucumber mosaic virus. In: Jones DD (ed) Proceedings of the third international symposium on the biosafety. Results of field tests of genetically modified plants and micro-organisms. University of California, Oakland, CA, pp 49–55Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Conservation BiologyUFZ—Helmholtz Centre for Environmental ResearchLeipzigGermany
  2. 2.Station d’Ecologie Expérimentale du CNRS à MoulisSaint GironsFrance

Personalised recommendations