Advertisement

Biodiversity and Conservation

, 17:2899 | Cite as

Drosophilid assemblages as a bioindicator system of human disturbance in the Brazilian Savanna

  • Renata Alves da Mata
  • Melodie McGeoch
  • Rosana Tidon
Original paper

Abstract

According to the Convention on Biological Diversity (CBD) the development of bioindicators is extremely necessary to achieve the conservation targets by 2010, and insects are considered an effective group for this goal. Drosophilids are regarded as potential indicators, although this idea remains untested. Therefore, we followed up a protocol to test the drosophilid potential indicator for human disturbance in the Brazilian Savanna, one of the richest and most threatened tropical biomes in the world. Sampling was undertaken in one urban environment and two biological reserves, representing four habitat types (undisturbed gallery forest, disturbed gallery forest, undisturbed savanna, and urban environment). We examined differences in the drosophilid assemblages among habitat types and used the Indicator Value (IndVal) method to point out the indicator species. We also tested the two-stage indicator validation, a protocol recently proposed in the literature, to validate the indicator species for undisturbed gallery forest and savannas, in independent samples. The assemblage variables varied mainly in undisturbed gallery forests, and reflected changes from an undisturbed to a disturbed stage. The IndVal associated with the two-stage protocol showed reliable characteristic species, which are very helpful for diagnostic surveys. Likewise, species that can detect changes in the habitats were also found. We found a set of indicators, which together may be very efficient for both assessing and reflecting a variety of conditions, improving the confidence of the bioindication system, expanding the taxonomic options for bioindicators, and therefore, contributing to the conservation of this region.

Keywords

Cerrado biome Characteristic species Conservation biology Detector species Drosophila Indicator value Monitoring Zaprionus indianus 

Notes

Acknowledgments

We are grateful to Ecological Reserve of IBGE (RECOR), Brasilia National Park (PN), and Spatial, Physiological, and Conservation Ecology laboratory of the Stellenbosch University and Universidade de Brasília for the logistic support, and to C.C. Arruda for the critical reading of the manuscript. This research was financially supported by the Conselho Nacional de Desenvolvimento científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

References

  1. Andersen AN (2004) Use of terrestrial invertebrates for biodiversity monitoring in Australia rangelands, with particular reference to ants. Aust Ecol 29:87–92. doi: 10.1111/j.1442-9993.2004.01362.x CrossRefGoogle Scholar
  2. Avondet JL, Blair RB, Berg DJ et al (2003) Drosophila (Diptera: Drosophilidae) response to changes in ecological parameters across an urban gradient. Environ Entomol 32:347–358CrossRefGoogle Scholar
  3. Bächli G (2007) TaxoDros: the database on taxonomy of Drosophilidae. http://www.taxodros.unizh.ch/. Accessed 16 Oct 2007
  4. Brookes M (2001) Fly: an experimental life. Weidenfeld & Nicolson, London, UKGoogle Scholar
  5. Brown KS (1991) Conservation of neotropical environments: insects as indicators. In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Academic Press, LondonGoogle Scholar
  6. Brown KS (1997) Diversity, disturbance, and sustainable use of neotropical forests: insects as indicators for conservation monitoring. J Insect Conserv 1:25–42. doi: 10.1023/A:1018422807610 CrossRefGoogle Scholar
  7. Brown KS (2000) Insetos indicadores da história, composição, diversidade e integridade de Matas Ciliares. In: Rodrigues RR, Leitão Filho HF (eds) Matas Ciliares: conservação e recuperação. EDUSP, São PauloGoogle Scholar
  8. Caro TM, O’Doherty G (1999) On the use of surrogate species in conservation biology. Conserv Biol 13:805–814. doi: 10.1046/j.1523-1739.1999.98338.x CrossRefGoogle Scholar
  9. Collett D (1991) Modeling binary data. Chapman & Hall, London, UKGoogle Scholar
  10. Dale VH, Beyeler SC (2001) Challenges in the development and use of ecological indicators. Ecol Indic 1:1–9. doi: 10.1016/S1470-160X(01)00003-6 CrossRefGoogle Scholar
  11. Diniz IR, Kitayama K (1998) Seasonality of vespid species (Hymenoptera : Vespidae) in a central Brazilian cerrado. Rev Biol Trop 46:109–114Google Scholar
  12. Dobson A (2005) Monitoring global rates of biodiversity change: challenges that arise in meeting the convention on Biological Diversity (DBD) 2010 goals. Philos Trans R Soc B 360:229–241. doi: 10.1098/rstb.2004.1603 CrossRefGoogle Scholar
  13. Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  14. Ferreira L, Tidon R (2005) Colonizing potential of Drosophilidae (Insecta, Diptera) in environments with different grades of urbanization. Biodivers Conserv 14:1809–1821CrossRefGoogle Scholar
  15. Freire-Maia A, Pavan C (1949) Introdução ao estudo da drosófila. Cultus 1:3–66Google Scholar
  16. Frota-Pessoa O (1954) Revision of the tripunctata group of Drosophila with description of fifteen new species (Drosophilidae, Diptera). Archos Mus Parana 10:253–304Google Scholar
  17. Grumbling G, Strelets V (2007) FlyBase: anatomical data, images and queries. Nucleic Acids Res. http://www.flybase.org/34. Accessed 16 Oct 2007
  18. Hilty J, Merenlender A (2000) Faunal indicator taxa selection for monitoring ecosystem health. Biol Conserv 92:185–197. doi: 10.1016/S0006-3207(99)00052-X CrossRefGoogle Scholar
  19. Hoffmann AA, Hallas RJ, Dean JA et al (2003) Low potential for climatic stress adaptation in a rainforest Drosophila species. Science 301:100–102. doi: 10.1126/science.1084296 PubMedCrossRefGoogle Scholar
  20. IUCN (2007) IUCN Red List of threatened species. http://www.iucnredlist.org. Accessed 16 Oct 2007
  21. Jenkins NL, Hoffmann AA (2001) Variation in morphological traits and trait asymmetry in field Drosophila serrata from marginal populations. J Evol Biol 13:113–130. doi: 10.1046/j.1420-9101.2000.00149.x CrossRefGoogle Scholar
  22. Karan D, Dahiya N, Munjal A et al (1998) Desiccation and starvation tolerance of adult Drosophila: opposite latitudinal clines in natural populations of three different species. Evolution 52:825–831. doi: 10.2307/2411276 CrossRefGoogle Scholar
  23. Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713. doi: 10.1111/j.1523-1739.2005.00702.x CrossRefGoogle Scholar
  24. Kremen C, Colwell RK, Erwin TL et al (1993) Terrestrial arthropod assemblages—their use in conservation planning. Conserv Biol 7:796–808. doi: 10.1046/j.1523-1739.1993.740796.x CrossRefGoogle Scholar
  25. Landres PB, Verner J, Thomas JW (1988) Ecological uses of vertebrate indicator species—a critique. Conserv Biol 2:316–328. doi: 10.1111/j.1523-1739.1988.tb00195.x CrossRefGoogle Scholar
  26. Marris E (2005) Conservation in Brazil: the forgotten ecosystem. Nature 437:944–945. doi: 10.1038/437944a PubMedCrossRefGoogle Scholar
  27. Mata RA (2002) Drosofilídeos (Diptera, Insecta) como indicadores do estado de perturbação do Cerrado. Dissertation, Universidade de BrasíliaGoogle Scholar
  28. McCullagh P, Nelder JA (1989) Generalized Linear Models. Chapman & Hall, London, UKGoogle Scholar
  29. McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev Cambridge Philos Soc 73:181–201. doi: 10.1017/S000632319700515X CrossRefGoogle Scholar
  30. McGeoch MA (2007) Insects and bioindication: theory and progress. In: Stewart AJA, Lewis OT, New TR (eds) Insect conservation biology. CABI Publishing, LondonGoogle Scholar
  31. McGeoch MA, Chown SL (1998) Scaling up the value of bioindicators. Trends Ecol Evol 13:46–47. doi: 10.1016/S0169-5347(97)01279-2 CrossRefGoogle Scholar
  32. McGeoch MA, Van Rensburg BJ, Botes A (2002) The verification and application of bioindicators: a case study of dung beetles in a savanna ecosystem. J Appl Ecol 39:661–672. doi: 10.1046/j.1365-2664.2002.00743.x CrossRefGoogle Scholar
  33. Medeiros HF, Klaczko LB (1999) A weakly biased Drosophila trap. Drosoph Inf Serv 82:100–102Google Scholar
  34. Mendonça RC, Felfili JM, Walter BMT et al (1998) Flora vascular do cerrado. In: Sano SM, Almeida AM (eds) Cerrado: Ambiente e Flora. Empresa Brasileira de Pesquisa Agropecuária, PlanaltinaGoogle Scholar
  35. Myers N, Mittermeyer RA, Mittermeyer CG et al (2000) Biodiversity spots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501 PubMedCrossRefGoogle Scholar
  36. Niemi GJ, McDonald ME (2004) Application of ecological indicators. Annu Rev Ecol Evol Syst 35:89–111. doi: 10.1146/annurev.ecolsys.35.112202.130132 CrossRefGoogle Scholar
  37. Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4:355–364. doi: 10.1111/j.1523-1739.1990.tb00309.x CrossRefGoogle Scholar
  38. Oliveira PS, Marquis RJ (2002) The Cerrados of Brazil. Ecology and natural history of a neotropical Savanna. Columbia University Press, New YorkGoogle Scholar
  39. Parsons PA (1991) Biodiversity conservation under global climatic-change—the insect Drosophila as a biological indicator. Glob Ecol Biogeogr 1:77–83. doi: 10.2307/2997493 CrossRefGoogle Scholar
  40. Parsons PA (1995) Evolutionary response to drought stress—conservation implications. Biol Conserv 74:21–27. doi: 10.1016/0006-3207(94)00124-9 CrossRefGoogle Scholar
  41. Pivello VR, Coutinho LM (1996) A qualitative successional model to assist in the management of Brazilian cerrados. For Ecol Manage 87:127–138. doi: 10.1016/S0378-1127(96)03829-7 CrossRefGoogle Scholar
  42. Powell JR (1997) Progress and prospects in evolutionary biology: the Drosophila Model. Oxford University Press, New YorkGoogle Scholar
  43. Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230. doi: 10.1006/anbo.1997.0469 CrossRefGoogle Scholar
  44. Redford KH, Fonseca GAB (1986) The role of gallery forest in the zoogeography of the cerrado’s non-volant mammalian fauna. Biotropica 18:126–135. doi: 10.2307/2388755 CrossRefGoogle Scholar
  45. Saavedra CCR, Callegari-Jacques SM, Napp M et al (1995) A descriptive and analytical study of 4 neotropical drosophilid communities. J Zool Syst Evol Res 33:62–74Google Scholar
  46. Samways MJ (2005) Insect diversity conservation. Cambridge University Press, CambridgeGoogle Scholar
  47. Silva JMC (1995) Birds of the Cerrado Region, South America. Steenstrupia 21:69–92Google Scholar
  48. Silva JF, Farinas MR, Felfili JM et al (2006) Spatial heterogeneity, land use and conservation in the cerrado region of Brazil. J Biogeogr 33:536–548. doi: 10.1111/j.1365-2699.2005.01422.x CrossRefGoogle Scholar
  49. Tidon R (2006) Relationships between drosophilids (Diptera, Drosophilidae) and the environment in two contrasting tropical vegetations. Biol J Linn Soc 87:233–248. doi: 10.1111/j.1095-8312.2006.00570.x CrossRefGoogle Scholar
  50. United Nations (2002) Report of the World Summit on Sustainable Development. A/CONF.199/20. JohannesburgGoogle Scholar
  51. Val FC (1982) The male genitalia of some Neotropical Drosophila: notes and illustrations. Pap Avul Dep Zool Sec Agric 34:309–347Google Scholar
  52. Van Klinken RD, Walter GH (2001) Subtropical drosophilids in Australia can be characterized by adult distribution across vegetation type and by height above forest floor. J Trop Ecol 17:705–718CrossRefGoogle Scholar
  53. Van Rensburg BJ, McGeoch MA, Chown SL et al (1999) Conservation of heterogeneity among dung beetles in the Maputaland Centre of Endemism, South Africa. Biol Conserv 88:145–153. doi: 10.1016/S0006-3207(98)00109-8 CrossRefGoogle Scholar
  54. Vilela CR (1983) A revision of the Drosophila repleta species group (Diptera, Drosophilidae). Rev Bras Entomol 27:1–114Google Scholar
  55. Vilela CR (1992) On the Drosophila tripunctata species group (Diptera, Drosophilidae). Rev Bras Entomol 36:197–221Google Scholar
  56. Vilela CR, Bächli G (1990) Taxonomic studies on neotropical species of seven genera of Drosophilidae (Diptera). Mitt Schweiz Ent Ges 63:1–332Google Scholar
  57. Wheeler MR (1981) The Drosophilidae: a taxonomic overview. In: Ashburner M, Carson HL, Thompson JN Jr (eds) Genetics and biology of Drosophila. Academic Press, New YorkGoogle Scholar
  58. Wheeler MR (1986) Additions to the catalog of the world’s Drosophilidae. In: Ashburner M, Carson HL, Thompson JN Jr (eds) Genetics and biology of Drosophila. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Renata Alves da Mata
    • 1
  • Melodie McGeoch
    • 2
  • Rosana Tidon
    • 3
  1. 1.Instituto de Ciências Biológicas/ECOUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Department of Conservation Ecology and Entomology, Centre for Invasion BiologyUniversity of StellenboschStellenboschSouth Africa
  3. 3.Instituto de Ciências Biológicas/GEMUniversidade de BrasíliaBrasiliaBrazil

Personalised recommendations