Biodiversity and Conservation

, Volume 17, Issue 12, pp 2849–2868 | Cite as

Macroecological patterns of spider species richness across Europe

Original Paper

Abstract

We analysed the pattern of covariation of European spider species richness with various environmental variables at different scales. Four layers of perception ranging from single investigation sites to the whole European continent were selected. Species richness was determined using published data from all four scales. Correlation analyses and stepwise multiple linear regression were used to relate richness to topographic, climatic and biotic variables. Up to nine environmental variables were included in the analyses (area, latitude, elevation range, mean annual temperature, local variation in mean annual temperature, mean annual precipitation, mean July temperature, local variation in mean July temperature, plant species richness). At the local and at the continental scale, no significant correlations with surface area were found, whereas at the landscape and regional scale, surface area had a significant positive effect on species richness. Factors that were positively correlated with species richness at both broader scales were plant species richness, elevation range, and specific temperature variables (regional scale: local variation in mean annual, and mean July temperature; continental scale: mean July temperature). Latitude was significantly negatively correlated with the species richness at the continental scale. Multiple models for spider species richness data accounted for up to 77% of the total variance in spider species richness data. Furthermore, multiple models explained variation in plant species richness up to 79% through the variables mean July temperature and elevation range. We conclude that these first continental wide analyses grasp the overall pattern in spider species richness of Europe quite well, although some of the observed patterns are not directly causal. Climatic variables are expected to be among the most important direct factors, although other variables (e.g. elevation range, plant species richness) are important (surrogate) correlates of spider species richness.

Keywords

Araneae Biodiversity Diversity gradients Environmental variables Species richness determinants 

Notes

Acknowledgements

We thank R. Biedermann (Oldenburg) and two anonymous reviewers for valuable comments on an earlier draft of this manuscript and for statistical advice.

References

  1. Aakra K, Hauge E (2003) Checklist of Norwegian spiders (Arachnida: Araneae), including Svalbard and Jan Mayen. Norw J Entomol 50:109–129Google Scholar
  2. Araújo MB, Humphries CJ (2001) Would environmental diversity be a good surrogate for species diversity? Ecography 24:103–110. doi: 10.1034/j.1600-0587.2001.240112.x CrossRefGoogle Scholar
  3. Belbin L (1993) Environmental representativeness: regional partitioning and reserve selection. Biol Conserv 66:223–230. doi: 10.1016/0006-3207(93)90007-N CrossRefGoogle Scholar
  4. Blackburn TM (2004) Method in macroecology. Basic Appl Ecol 5:401–412. doi: 10.1016/j.baae.2004.08.002 CrossRefGoogle Scholar
  5. Blackburn TM, Gaston KJ (2004) Macroecology. Basic Appl Ecol 5:385–387. doi: 10.1016/j.baae.2004.08.005 CrossRefGoogle Scholar
  6. Blick T, Bosmans R, Buchar J et al (2004) Checklist of the spiders of Central Europe (Arachnida: Araneae), Version 1. December 2004. Internet: http://www.arages.de/checklist.html#2004_Araneae
  7. Currie DJ (1991) Energy and large-scale patterns of animal- and plant-species richness. Am Nat 137:27–49. doi: 10.1086/285144 CrossRefGoogle Scholar
  8. Cornell HV, Lawton JH (1992) Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J Anim Ecol 61:1–12. doi: 10.2307/5503 CrossRefGoogle Scholar
  9. Davis, DD, Heywood VH, Hamilton AC (eds) (1994) Centres of plant diversity: a guide and strategy for their conservation. Vol. 1: Europe, Africa, South West Asia and the Middle East. IUCN Publication Unit, CambridgeGoogle Scholar
  10. Deltshev C (2004) A zoogeographical review of the spiders (Araneae) of the Balkan Peninsula. In: Griffiths HI, Krystufek B, Ree JM (eds) Balkan biodiversity—pattern and process in the European hotspot. Kluwer, Dordrecht, pp 193–200Google Scholar
  11. Diniz-Filho JAF, Bini LM, Hawkins BS (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64. http://dx.doi.org/10.1046/j.1466-822X.2003.00322.x Google Scholar
  12. Dutilleul P (1993) Modifying the t test for assessing the correlation between two spatial processes. Biometrics 49:305–314. doi: 10.2307/2532625 CrossRefGoogle Scholar
  13. Evans KL, Greenwood JD, Gaston KJ (2007) The positive correlation between avian species richness and human population density in Britain is not attributable to sampling bias. Glob Ecol Biogeogr 16:300–304. doi: 10.1111/j.1466-8238.2006.00288.x CrossRefGoogle Scholar
  14. Faith DP, Walker PA (1996) Environmental diversity: on the best-possible use of surrogate data for assessing the relative biodiversity of sets of areas. Biodivers Conserv 5:399–415. doi:  10.1007/BF00056387 CrossRefGoogle Scholar
  15. Field R, O’Brien EM, Whittaker RJ (2005) Global models for predicting woody plant richness from climate: development and evaluation. Ecology 86:2263–2277. doi: 10.1890/04-1910 CrossRefGoogle Scholar
  16. Gaston KJ (1992) Regional numbers of insect and plant species. Funct Ecol 6:243–247. doi: 10.2307/2389513 CrossRefGoogle Scholar
  17. Gaston KJ (1996) Species richness: measure and measurement. In: Gaston KJ (ed) Biodiversity. A biology of numbers and difference. Blackwell Science, Oxford, pp 77–113Google Scholar
  18. Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227. doi: 10.1038/35012228 PubMedCrossRefGoogle Scholar
  19. Gaston KJ, Blackburn TM (2000) Pattern and process in macroecology. Blackwell Sciences, OxfordGoogle Scholar
  20. Goldberg DE, Miller TE (1990) Effects of different resource additions on species diversity in an annual plant community. Ecology 71:213–225. doi: 10.2307/1940261 CrossRefGoogle Scholar
  21. Groombridge B (ed) (1992) Global biodiversity: status of the earth’s living resources. Chapman & Hall, LondonGoogle Scholar
  22. Groombridge B (ed) (1994) Biodiversity data sourcebook. World Conservation Press, CambridgeGoogle Scholar
  23. Harvey PR, Nellist DR, Telfer MG (2002) Provisional atlas of British spiders (Arachnida, Araneae), vols 1 and 2. Biological Records Centre, HuntingdonGoogle Scholar
  24. Hauge E (1989) An annotated check-list of Norwegian spiders (Araneae). Insecta Norvegiae 4:1–40Google Scholar
  25. Hawkins BA, Agrawal AA (2005) Latitudinal gradients. Ecology 86:2261–2262. doi: 10.1890/05-0004 CrossRefGoogle Scholar
  26. Hawkins BA, Diniz-Filho AAF (2004) ‘Latitude’ and geographic patterns in species richness. Ecography 27:268–272. doi: 10.1111/j.0906-7590.2004.03883.x CrossRefGoogle Scholar
  27. Hawkins BA, Pausas JG (2004) Does plant richness influence animal richness? The mammals of Catalonia (NE Spain). Divers Distrib 10:247–252. doi: 10.1111/j.1366-9516.2004.00085.x CrossRefGoogle Scholar
  28. Hawkins BA, Porter EE (2003) Does herbivore diversity depend on plant diversity? The case of California butterflies. Am Nat 161:40–49. doi: 10.1086/345479 PubMedCrossRefGoogle Scholar
  29. Hawkins BA, Field R, Cornell HV et al (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117. doi: 10.1890/03-8006 CrossRefGoogle Scholar
  30. Hendrickx F, Maelfait J-P, van Wingerden W et al (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351. doi: 10.1111/j.1365-2664.2006.01270.x CrossRefGoogle Scholar
  31. Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211. doi: 10.1086/381004 PubMedCrossRefGoogle Scholar
  32. Hillebrand H, Blenckner T (2002) Regional and local impact on species diversity—from pattern to processes. Oecologia 132:479–491. doi: 10.1007/s00442-002-0988-3 CrossRefGoogle Scholar
  33. Hortal J, Lobo JM, Martín-Piera F (2001) Forecasting insect species richness scores in poorly surveyed territories: the case of the Portuguese dung beetles (Col Scarabaeinae). Biodivers Conserv 10:1343–1367. doi: 10.1023/A:1016624500023 CrossRefGoogle Scholar
  34. Howard PC, Viskanic P, Davenport TRB et al (1998) Complemantarity and the use of indicator groups for reserve selection in Uganda. Nature 394:472–475. doi: 10.1038/28843 CrossRefGoogle Scholar
  35. Huston M (1994) Biological diversity. The coexistence of species on changing landscapes. CUP, CambridgeGoogle Scholar
  36. Jiménez-Valverde A, Lobo JM (2007) Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: climate and altitude vs. habitat structure. Ecol Entomol 32:113–122. doi: 10.1111/j.1365-2311.2006.00848.x CrossRefGoogle Scholar
  37. Kerr JT, Packer L (1997) Habitat heterogeneity as a determinant of mammal species richness in high energy regions. Nature 385:252–254. doi: 10.1038/385252a0 CrossRefGoogle Scholar
  38. Kerr JT, Vincent R, Currie DJ (1998) Lepidopteran richness patterns in North America. Ecoscience 5:448–453Google Scholar
  39. Koponen S (1993) On the biogeography and faunistics of European spiders: latitude, altitude and insularity. Bull Soc Neuchâtel Sci Nat 116:141–152Google Scholar
  40. Korneck D, Schnittler M, Vollmer I (1996) Rote Liste der Farn- und Blütenpflanzen (Pteridophyta et Spermatophyta) Deutschlands. Schr.reihe Veg.kd 28:21–187Google Scholar
  41. Kuntner M, Sereg I (2002) Additions to the spider fauna of Slovenia, with a comparison of spider species richness among European countries. Bull Br Arachnol Soc 12:185–195Google Scholar
  42. Lamoreux JF, Morrison JC, Ricketts TH et al (2006) Global tests of biodiversity concordance and the importance of endemism. Nature 440:212–214. doi: 10.1038/nature04291 PubMedCrossRefGoogle Scholar
  43. Lawton JH (1999) Are there general laws in ecology? Oikos 84:177–192. doi: 10.2307/3546712 CrossRefGoogle Scholar
  44. Lennon JJ, Greenwood JJD, Turner JRG (2000) Bird diversity and environmental gradients in Britain: a test of the species-energy hypothesis. J Anim Ecol 69:581–598. doi: 10.1046/j.1365-2656.2000.00418.x CrossRefGoogle Scholar
  45. Lobo JM, Lumaret J-P, Jay-Robert P (2002) Modelling the species richness distribution of French dung beetles (Coleoptera, Scarabaeidae) and delimiting the predictive capacity of different groups of explanatory variables. Glob Ecol Biogeogr 11:265–277. doi: 10.1046/j.1466-822X.2002.00291.x CrossRefGoogle Scholar
  46. Lomolino MV (2000) Ecology’s most general, yet protean pattern: the species-area relationship. J Biogeogr 27:17–26. doi: 10.1046/j.1365-2699.2000.00377.x CrossRefGoogle Scholar
  47. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Monogr Popul Biol 1:1–203. doi: 10.1016/0040-5809(70)90039-0 CrossRefGoogle Scholar
  48. Maraun M, Schatz H, Scheu S (2007) Awesome or ordinary? Global diversity patterns of oribatid mites. Ecography 30:209–216. http://dx.doi.org/10.1111/j.0906-7590.2007.04994.x Google Scholar
  49. Margules CR, Nicholls AO, Austin MP (1987) Diversity of Eucalyptus species predicted by a multi-variable environment gradient. Oecologia 71:229–232. doi: 10.1007/BF00377288 CrossRefGoogle Scholar
  50. Metzing D, Heine K, Eggers P et al (2008) Die Farn- und Blütenpflanzen der Ostfriesischen Inseln - Auswertung des historischen und rezenten Artenbestandes als Beitrag zur Biodiversität der Ostfriesischen Inseln. Schr.R Nationalpark Nieders Wattenmeer 11:35–60Google Scholar
  51. Mitchell TD, Hulme M, New M (2002) Climate data for political areas. Area 34:109–112. doi: 10.1111/1475-4762.00062 CrossRefGoogle Scholar
  52. Mittelbach GG, Steiner CF, Scheiner SM et al (2001) What is the observed relationship between species richness and productivity? Ecology 82:2381–2396. http://dx.doi.org/10.1890/00129658(2001)082[2381:WITORB]2.0.CO;2 Google Scholar
  53. Pandit R, Laband DL (2007) Spatial autocorrelation in country-level models of species imperilment. Ecol Econ 60:526–532. doi: 10.1016/j.ecolecon.2006.07.018 CrossRefGoogle Scholar
  54. Platen R, Blick T, Bliss P et al (1995) Verzeichnis der Spinnentiere (excl. Acarida) Deutschlands (Arachnida: Araneida, Opilionida, Pseudoscorpionida). Arachnol Mitt, Sonderband 1:1–55Google Scholar
  55. Platnick NI (2008) The world spider catalog, 8.5. American Museum of Natural History, New York. Internet: http://research.amnh.org/entomology/spiders/catalog/intro.html
  56. Pianka ER (1966) Latitudinal gradients in species diversity: a review of concepts. Am Nat 100:30–46. doi: 10.1086/282398 CrossRefGoogle Scholar
  57. Prendergast JR, Wood SN, Lawton JH, Eversham BC (1993) Correcting for variation in recording effort in analyses of diversity hotspots. Biodivers Lett 1:39–53. doi: 10.2307/2999649 CrossRefGoogle Scholar
  58. Qian H (2007) Relationships between plant and animal species richness at a regional scale in China. Conserv Biol 21:937–944. doi: 10.1111/j.1523-1739.2007.00692.x PubMedCrossRefGoogle Scholar
  59. Qian H, Wang X, Wang S et al (2007) Environmental determinants of amphibian and reptile species richness in China. Ecography 30:471–482. http://dx.doi.org/10.1111/j.0906.7590.2007.05025.x Google Scholar
  60. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, MelbourneGoogle Scholar
  61. Quinn RM, Gaston KJ, Roy DB (1998) Coincidence in the distributions of butterflies and their foodplants. Ecography 21:279–288. doi: 10.1111/j.1600-0587.1998.tb00565.x CrossRefGoogle Scholar
  62. Rahbek C, Graves GR (2001) Multiscale assessment of patterns of avian species richness. Proc Natl Acad Sci USA 98:4534–4539. doi: 10.1073/pnas.071034898 PubMedCrossRefGoogle Scholar
  63. Rangel TFLVB, Diniz-Filho JAF, Bini LM (2006) Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Glob Ecol Biogeogr 15:321–327. doi: 10.1111/j.1466-822X.2006.00237.x CrossRefGoogle Scholar
  64. Ricklefs RE (1987) Community diversity: relative roles of local and regional species richness. Science 235:167–171. doi: 10.1126/science.235.4785.167 PubMedCrossRefGoogle Scholar
  65. Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65:514–527. doi: 10.2307/3545569 CrossRefGoogle Scholar
  66. Rosenzweig ML (1997) Species diversity in space and time. Cambridge, Cambridge University PressGoogle Scholar
  67. Siemann E, Tilman D, Haarstad J et al (1998) Experimental tests of the dependence of arthropod diversity on plant diversity. Am Nat 152:738–750. doi: 10.1086/286204 PubMedCrossRefGoogle Scholar
  68. SPSS Inc. (2002) SPSS für Windows 11.5. SPSS Inc., IllinoisGoogle Scholar
  69. Staudt A (2007) Nachweiskarten der Spinnentiere Deutschlands. Internet: http://www.spiderling.de/arages/
  70. Storch D, Kotechy V (1999) Structure of bird communities in the Czech Republic: the effect of area, census technique and habitat type. Folia Zool 48:265–277Google Scholar
  71. Storch D, Gaston KJ (2004) Untangling ecological complexity on different scales of space and time. Basic Appl Ecol 5:389–400. doi: 10.1016/j.baae.2004.08.001 CrossRefGoogle Scholar
  72. Storch D, Sizling AL, Gaston KJ (2003) Geometry of the species area relationship in Central European birds: testing the mechanism. J Anim Ecol 72:509–519. doi: 10.1046/j.1365-2656.2003.00721.x CrossRefGoogle Scholar
  73. Tews J, Brose U, Grimm V et al (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92Google Scholar
  74. Turner JRG (2004) Explaining the global biodiversity gradient: energy, area, history and natural selection. Basic Appl Ecol 5:435–448. doi: 10.1016/j.baae.2004.08.004 CrossRefGoogle Scholar
  75. Turner JRG, Gatehouse CM, Corey CA (1987) Does solar energy control organic diversity? Butterflies, moths and the British climate. Oikos 48:195–205. doi: 10.2307/3565855 CrossRefGoogle Scholar
  76. Uetz GW (1991) Habitat structure and spider foraging. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structure. The physical arrangement of objects in space. Chapman and Hall, London, pp 325–347Google Scholar
  77. Walter KS, Gillett HJ (1998) 1997 IUCN Red list of threatened plants. World Conservation Union, Gland, SwitzerlandGoogle Scholar
  78. Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470. doi: 10.1046/j.1365-2699.2001.00563.x CrossRefGoogle Scholar
  79. Williams CB (1964) Patterns in the balance of nature. Academic Press, LondonGoogle Scholar
  80. Willig MR (2001) Latitudinal gradients in diversity. In: Levin S (ed) Encyclopedia of biodiversity, vol 3. Academic Press, San DiegoGoogle Scholar
  81. Willis KJ, Whittaker RJ (2002) Species diversity: scale matters. Science 295:1245–1248. doi: 10.1126/science.1067335 PubMedCrossRefGoogle Scholar
  82. Zhao S, Fang J, Peng C et al (2006) Relationships between species richness of vascular plants and terrestrial vertebrates in China: analyses based on data of nature reserves. Divers Distrib 12:189–194. doi: 10.1111/j.1366-9516.2005.00215.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Terrestrial Ecology Working Group, Department of Biology and Environmental Sciences, Faculty VCarl-von-Ossietzky-University of OldenburgOldenburgGermany
  2. 2.Zoological research in Hessian strict forest reservesSenckenberg Research InstituteFrankfurt am MainGermany
  3. 3.Department of Ecology and Environmental ChemistryUniversity of LüneburgLüneburgGermany

Personalised recommendations