Biodiversity and Conservation

, 17:2441 | Cite as

Molecular data indicate multiple independent colonizations of former lignite mining areas in Eastern Germany by Epipactis palustris (Orchidaceae)

  • Korinna EsfeldEmail author
  • I. Hensen
  • K. Wesche
  • S. S. Jakob
  • S. Tischew
  • F. R. Blattner
Original Paper


Former lignite mining areas in Eastern Germany are valuable secondary habitats for many plant and animal species endangered in the natural landscape. Here, we present a study on genetic structure and diversity of 16 populations of the threatened orchid Epipactis palustris (Orchidaceae) from five mining pits and 11 natural habitats, which we carried out in order to ascertain how many times this species immigrated into former lignite mining areas, and where the source populations are located. We used two different anonymous genetic marker methods, random amplified polymorphic DNA (RAPD) and microRNA-primed genomic fingerprinting (miRPF) to analyze patterns of genetic variation. Results of a multivariate analysis based on asymmetric Soerensen similarity, principal coordinate analysis and a neighbor-joining cluster analysis indicate high within population-variability and a moderate genetic differentiation among E. palustris populations. We found no differences between genetic diversity values of populations from former mining areas and those of natural habitats. Thus, we could not find evidences for genetic bottlenecks in the mining populations due to founder events. Source populations are predominantly close surrounding populations as geographic distance and genetic dissimilarity were correlated. However, exchanges may reach beyond 125 km and repeated independent colonization events are highly likely.


Colonization Donor population Epipactis palustris Genetic diversity Immigration Mining pits miRPF Population structure RAPD 



We would like to thank Anke Dittbrenner for assistance in the field and the ‘Regierungspräsidium Halle’, the ‘Thüringer Ministerium für Landwirtschaft, Naturschutz und Umwelt’, and ‘LMU Mecklenburg-Vorpommern’ for the permission to collect leaves of Epipactis palustris in protected areas.


  1. Antonovics J, Bradshaw AD (1970) Evolution in closely adjacent plant populations. VIII. Clinal patterns at a mine boundary. Heredity 25:349–362CrossRefGoogle Scholar
  2. Ash HJ, Gemmell RP, Bradshaw AD (1994) The introduction of native plant species on industrial waste heaps: a test of immigration and other factors affecting primary succession. J Appl Ecol 31:74–84. doi: 10.2307/2404600 CrossRefGoogle Scholar
  3. Bakker JP, Poschlod P, Stryskstra RJ, Bekker RM, Thompson K (1996) Seed banks and seed dispersal: Important topics in restoration ecology. Acta Bot Neerl 45:461–490Google Scholar
  4. Barrett S, Shore JS (1989) Isozyme variation in colonizing plants. In: Soltis DE, Soltis PS (eds) Isozymes in Plant Biology. Dioscorides Press, Portland, pp 106–126Google Scholar
  5. Baum H (1998) Echte Sumpfwurz (Epipactis palustris (L.) Crantz), Orchidee des Jahres 1998. Ber Arbeitskr heim Orchideen 14:36–46Google Scholar
  6. Baasch A, Seppelt M (2004) Orchideen (Orchidaceae). In: Tischew S (ed) Renaturierung nach dem Braunkohletagebau. Teubner Verlag, Stuttgart, Germany, pp 74–85Google Scholar
  7. Blattner FR, Esfeld K, Achigan-Dako EG, Jakob SS, Wahrmund U (submitted). Direct amplification of conserved microRNA loci and miRNA-primed fingerprinting (miRPF) in plantsGoogle Scholar
  8. Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758. doi: 10.1111/j.1365-294X.2007.03435.x PubMedCrossRefGoogle Scholar
  9. Bonn S, Poschlod P (1998) Ausbreitungsbiologie der Pflanzen Mitteleuropas. Grundlagen und kulturhistorische Aspekte. Quelle and Meyer, WiesbadenGoogle Scholar
  10. Bradshaw AD (1983) The reconstruction of ecosystems. J Appl Ecol 20:1–17. doi: 10.2307/2403372 CrossRefGoogle Scholar
  11. Bradshaw AD (1997) Restoration of mined lands–using natural processes. Ecol Eng 8:255–269. doi: 10.1016/S0925-8574(97)00022-0 CrossRefGoogle Scholar
  12. Bradshaw AD (2000) The use of natural processes in reclamation–advantages and difficulties. Landsc Urban Plann 51:89–100. doi: 10.1016/S0169-2046(00)00099-2 CrossRefGoogle Scholar
  13. Brandle M, Durka W, Altmoos M (2000) Diversity of surface dwelling beetle assemblages in open-cast lignite mines in Central Germany. Biodivers Conserv 9:1297–1311. doi: 10.1023/A:1008904605567 CrossRefGoogle Scholar
  14. Brock J, Aboling S, Stelzer R, Esch E, Papenbrock J (2007) Genetic variation among different populations of Aster tripolium grown on naturally and anthropogenic salt-contaminated habitats: implications for conservation strategies. J Plant Res 120:99–112. doi: 10.1007/s10265-006-0030-7 PubMedCrossRefGoogle Scholar
  15. Brzosko E, Wróblewska A (2003) Genetic variation and clonal diversity in island Cephalanthera rubra populations from Biebrza. Bot J Linn Soc 143:99–108. doi: 10.1046/j.1095-8339.2003.00201.x CrossRefGoogle Scholar
  16. Choi YD (2004) Theories for ecological restoration in changing environment: Toward ‘futuristic’ restoration. Ecol Res 19:75–81. doi: 10.1111/j.1440-1703.2003.00594.x CrossRefGoogle Scholar
  17. Csecserits A, Szabo R, Halassy M, Redei T (2007) Testing the validity of successional predictions on an old-field chronosequence in Hungary. Community Ecol 8:195–207CrossRefGoogle Scholar
  18. Cozzolino S, Noce ME, Musacchio A, Widmer A (2003) Variation at a chloroplast minisatellite locus reveals the signature of habitat fragmentation and genetic bottlenecks in the rare orchid Anacamptis palustris (Orchidaceae). Am J Bot 90:1681–1687. doi: 10.3732/ajb.90.12.1681 CrossRefGoogle Scholar
  19. del Moral R (2007) Limits to convergence of vegetation during early primary succession. J Veg Sci 18:479–488. doi: 10.1658/1100-9233(2007)18[479:LTCOVD]2.0.CO;2 CrossRefGoogle Scholar
  20. Durka W, Bossdorf O, Prati D, Auge H (2005) Molecular evidence for multiple introductions of invasive garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Mol Ecol 14:1697–1706. doi: 10.1111/j.1365-294X.2005.02521.x PubMedCrossRefGoogle Scholar
  21. Fort KP, Richards JH (1998) Does seed dispersal limit initiation of primary succession in desert playas? Am J Bot 85:1722–1731. doi: 10.2307/2446506 CrossRefGoogle Scholar
  22. Gustafsson S (2000) Patterns of genetic variation in Gymnadenia conopsea, the fragrant orchid. Mol Ecol 9:1863–1872. doi: 10.1046/j.1365-294x.2000.01086.x PubMedCrossRefGoogle Scholar
  23. Haas M (2000) Epipactis palustris in Hessen südlich des Mains. Ber Arbeitskr heim Orchideen 17:15–30Google Scholar
  24. Hardtke HJ, Ihl A (2000) Atlas der Farn-und Samenpflanzen Sachsens. Sächsisches Landesamt für Umwelt und Geologie, DresdenGoogle Scholar
  25. He T, Krauss SL, Lamont BB, Miller BP, Enright NJ (2004) Long-distance seed dispersal in a metapopulation of Banksia hookeriana inferred from a metapopulation allocation analysis of amplified fragment length polymorphism data. Mol Ecol 13:1–11. doi: 10.1111/j.1365-294X.2004.02120.x CrossRefGoogle Scholar
  26. Heyde K, Krug H (2000) Orchideen in der Mitteldeutschen Braunkohlen-Bergbaufolgelandschaft. LMBV, EspenhainGoogle Scholar
  27. Hollingsworth PM, Dickson JH (1997) Genetic variation in ruderal and urban populations of Epipactis helleborine (L.) Crantz (Orchidaceae) in Britain. Bot J Linn Soc 123:321–331. doi: 10.1006/bojl.1996.0092 Google Scholar
  28. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586. doi: 10.2307/1934145 CrossRefGoogle Scholar
  29. Jakob SS, Ihlow A, Blattner FR (2007) Combined ecological niche modeling and molecular phylogeography revealed the evolutionary history of Hordeum marinum (Poaceae) - niche differentiation, loss of genetic diversity, and speciation in Mediterranean Quaternary refugia. Mol Ecol 16:1713–1724. doi: 10.1111/j.1365-294X.2007.03228.x PubMedCrossRefGoogle Scholar
  30. Kirmer A, Tischew S, Ozinga WA, von Lampe M, van Groenendael JM (accepted): Importance of regional species pools and functional traits in colonisation processes predicting re-colonisation after large-scale destruction of ecosystems. J Appl EcolGoogle Scholar
  31. Klotz S, Durka W, Schmidt T (2000) Vegetationsstruktur und -dynamik auf ehemaligen Bergbaustandorten in Mitteldeutschland und ihre Bedeutung für die Renaturierung. Rundgespr Kommiss Ökol 20:43–51Google Scholar
  32. Krüger AM, Hellwig FH, Oberprieler C (2002) Genetic diversity in natural and anthropogenic inland populations of salt-tolerant plants: random amplified polymorphic DNA analyses of Aster tripolium L. (Compositae) and Salicornia ramosissima Woods (Chenopodiaceae). Mol Ecol 11:1647–1655. doi: 10.1046/j.1365-294X.2002.01562.x PubMedCrossRefGoogle Scholar
  33. Kühn I, Klotz S (2002) Systematik, Taxonomie und Nomenklatur. Schr Reihe Vegetationskde 38:41–46Google Scholar
  34. Lian C, Oishi R, Miyashita N, Nara K, Nakaya H, Wu B, Zhou Z, Hogetsu T (2003) Genetic structure and reproduction dynamics of Salix renii during primary succession on Mount Fuji, as revealed by nuclear and chloroplast microsatellite analysis. Mol Ecol 12:609–618. doi: 10.1046/j.1365-294X.2003.01756.x PubMedCrossRefGoogle Scholar
  35. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  36. Martinez-Ruiz C, Marrs RH (2007) Some factors affecting successional change on uranium mine wastes: Insights for ecological restoration. Appl Veg Sci 10:333–342CrossRefGoogle Scholar
  37. McCauley DE, Raveill J, Antonovics J (1995) Local founding events as determinants of genetic structure in a plant metapopulation. Heredity 75:630–636CrossRefGoogle Scholar
  38. McCune B, Mefford MJ (1997) PC-ORD: Multivariate analysis of ecological data. Version 2, MJM Software Design, Gleneden BeachGoogle Scholar
  39. Mengoni A, Gonelli C, Galardi F, Gabrielli R, Bazzicalupo M (2000) Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a random amplified polymorphic DNA analysis. Mol Ecol 9:1319–1324. doi: 10.1046/j.1365-294x.2000.01011.x PubMedCrossRefGoogle Scholar
  40. Mengoni A, Barabesi C, Gonnelli C, Galardi F, Gabbrielli R, Bazzicalupo M (2001) Genetic diversity of heavy metal-tolerant populations in Silene paradoxa L. (Caryophyllaceae): a chloroplast microsatellite analysis. Mol Ecol 10:1909–1916. doi: 10.1046/j.0962-1083.2001.01336.x PubMedCrossRefGoogle Scholar
  41. Morris RKA, Alonso I, Jefferson RG, Kirby KJ (2006) The creation of compensatory habitat–Can it secure sustainable development? J Nat Conservat 14:106–116. doi: 10.1016/j.jnc.2006.01.003 CrossRefGoogle Scholar
  42. Mrzljak J, Wiegleb G (2000) Spider colonization of former brown coal mining areas–time or structure dependent? Landsc Urban Plann 51:131–146. doi: 10.1016/S0169-2046(00)00104-3 CrossRefGoogle Scholar
  43. Nei NM, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. PNAS 76:5269–5273. doi: 10.1073/pnas.76.10.5269 PubMedCrossRefGoogle Scholar
  44. Nilsson LA (1978) Pollination ecology of Epipactis palustris (Orchidaceae). Botan Notiser 131:355–368Google Scholar
  45. Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Persp Plant Ecol Evol Syst 3:93–114. doi: 10.1078/1433-8319-00006 CrossRefGoogle Scholar
  46. Oberdorfer E (1994) Pflanzensoziologische Exkursionsflora. Ulmer, StuttgartGoogle Scholar
  47. Pleines T, Blattner FR (2008) Phylogeographic implications of an AFLP phylogeny of the American diploid Hordeum species. Taxon, in pressGoogle Scholar
  48. Prach K (1987) Succession of on dumps from strip coal mining, NW Bohemia, Chechoslovakia. Folia Geobotanica & Phytotaxonomica 22:339–354Google Scholar
  49. Prach K (2003) Spontaneous succession in Central-European man-made habitats: What information can be used in restoration practice? Appl Veg Sci 6:125–129. doi: 10.1658/1402-2001(2003)006[0125:SSICMH]2.0.CO;2 CrossRefGoogle Scholar
  50. Prach K, Pyšek P (1999) How do species dominating in succession differ from others? J Veg Sci 10:383–392. doi: 10.2307/3237067 CrossRefGoogle Scholar
  51. Prach K, Pyšek P (2001) Using spontaneous succession for restoration of human-disturbed habitats: Experience from Central Europe. Ecol Eng 17:55–62. doi: 10.1016/S0925-8574(00)00132-4 CrossRefGoogle Scholar
  52. Rehounková K, Prach K (2006) Spontaneous vegetation succession in disused gravel-sand pits: Role of local site and landscape factors. J Veg Sci 17:583–590. doi: 10.1658/1100-9233(2006)17[583:SVSIDG]2.0.CO;2 CrossRefGoogle Scholar
  53. Reisch C (2007) Genetic structure of Saxifraga tridactylites (Saxifragaceae) from natural and man-made habitats. Conservat Genet 8:893–902. doi: 10.1007/s10592-006-9244-4 CrossRefGoogle Scholar
  54. Ridley HN (1990) The dispersal of plants throughout the world. Reprint. Koeltz, KönigsteinGoogle Scholar
  55. Rothmaler W (Begr.) (1996) Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband. K. Fischer Verlag, JenaGoogle Scholar
  56. Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN ver 2.000. A software for population genetic data analysis. Genetics and Biometry Laboratory. University of Geneva, SwitzerlandGoogle Scholar
  57. Schulz F, Wiegleb G (2000) Development options of natural habitats in a post-mining landscape. Land Degrad Dev 11:99–110. doi:10.1002/(SICI) 1099-145X(200003/04) 11:2<99::AID-LDR368>3.0.CO;2-IGoogle Scholar
  58. Sebald O, Seybold S, Philippi G, Wörz A (Hrsg.) (1998) Die Farn- und Blütenpflanzen Baden-Württembergs. Band 8, Teil 2. Ulmer, StuttgartGoogle Scholar
  59. Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), version 4.0. Sinauer Associates, SunderlandGoogle Scholar
  60. Tackenberg O (2001) Methoden zur Bewertung gradueller Unterschiede des Ausbreitungspotentials von Pflanzenarten. Diss Bot 347, J. Cramer, StuttgartGoogle Scholar
  61. Tackenberg O, Poschlod P, Bonn S (2003) Assessment of wind dispersal potential in plant species. Ecol Monogr 73:191–205. doi: 10.1890/0012-9615(2003)073[0191:AOWDPI]2.0.CO;2 CrossRefGoogle Scholar
  62. ter Braak CJF, Smilauer P (2002) Canoco 4.5 Reference Manual. Biometris, Wageningen, Ceske BudejoviceGoogle Scholar
  63. Tischew S, Kirmer A (2003) Entwicklung der Biodiversität in Tagebaufolgelandschaften: Spontane und initiierte Besiedlungsprozesse. Nova Acta Leopold 87:249–286Google Scholar
  64. Tischew S, Kirmer A (2007) Application of basic studies in restoration ecology: success and deficiencies in the ecological restoration of surface-mined land in eastern Germany. Restor Ecol 15:321–325. doi: 10.1111/j.1526-100X.2007.00217.x CrossRefGoogle Scholar
  65. Tremetsberger K, Stuessy TF, Samuel RM, Baeza CM, Fay MF (2003) Genetics of colonization in Hypochaeris tenuifolia (Asteraceae, Lactuceae) on Volcán Lonquimay, Chile. Mol Ecol 12:2649–2659. doi: 10.1046/j.1365-294X.2003.01956.x PubMedCrossRefGoogle Scholar
  66. Twigg LE, Fox BJ, Jia L (1989) The modified primary succession following sand mining–a validation of the use of chronosequence analysis. Aust J Ecol 14:441–447. doi: 10.1111/j.1442-9993.1989.tb01453.x CrossRefGoogle Scholar
  67. Wallace LE (2002) Examining the effects of fragmentation on genetic variation on Platanthera leucophaea (Orchidaceae). Inferences from alloenzyme and random amplified polymorphic DNA markers. Pl Species Biol 17:37–49. doi: 10.1046/j.1442-1984.2002.00072.x CrossRefGoogle Scholar
  68. Welk E (2002) Arealkundliche Analyse und Bewertung der Schutzrelevanz seltener und gefährdeter Gefäßpflanzen Deutschlands. Bundesamt für Naturschutz, BonnGoogle Scholar
  69. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218. doi: 10.1093/nar/18.24.7213 PubMedCrossRefGoogle Scholar
  70. Wiegleb G, Felinks B (2001) Predictability of early stages of primary succession in post-mining landscapes of Lower Lusatia, Germany. Appl Veg Sci 4:5–18Google Scholar
  71. Willems JH (1982) Establishment, development of a population of Orchis simia Lamk. in the Netherlands, 1972 to 1981. N Phytol 91:757–765. doi: 10.1111/j.1469-8137.1982.tb03355.x CrossRefGoogle Scholar
  72. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535. doi: 10.1093/nar/18.22.6531 PubMedCrossRefGoogle Scholar
  73. Ziegenspeck H (1936) Orchidaceae. In: von Kirchner O, Loew E, Schröter C (eds) Lebensgeschichte der Blütenpflanzen Mitteleuropas, Vol 1, 4. Ulmer, StuttgartGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Korinna Esfeld
    • 1
    • 2
    Email author
  • I. Hensen
    • 1
  • K. Wesche
    • 1
  • S. S. Jakob
    • 2
  • S. Tischew
    • 3
  • F. R. Blattner
    • 2
  1. 1.Institute of Biology/Geobotany and Botanical GardenMartin-Luther University of Halle-WittenbergHalle/SaaleGermany
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  3. 3.Anhalt University of Applied SciencesBernburgGermany

Personalised recommendations