Patterns of Orthoptera abundance and lesser kestrel conservation in arable landscapes

Original Paper

Abstract

The lesser kestrel Falco naumanni experienced a marked decline during the second half of the 20th century due to changes in land use that influenced breeding success by reducing the abundance and quality of prey. However, the factors governing spatial and temporal variation of prey abundance around lesser kestrel colonies has not yet been investigated. We sampled Orthoptera abundance in the main crop types and edge habitats surrounding six lesser kestrel colonies in southern Spain. Samplings focused on Orthoptera because they constitute the main prey during the nestling period. Only those Orthoptera species that are known to be preyed by lesser kestrels were considered in this study. We found differences in prey density among localities, and crop types. Semi-natural habitats such as grasslands, fallow land, and field margins held the highest densities. However, prey abundance showed a complex pattern that was not possible to explain solely on the basis of crop composition around colonies. Factors determining productivity in individual fields like soil type and productivity or biocide input, and mean size of agricultural fields contributed to explain this complex pattern of prey abundance. Our results highlight the key role of semi-natural and edge habitats in farmed landscapes as prey reservoirs and corridors. Higher conservation priorities for these habitats are suggested to benefit foraging lesser kestrels, but many other farmland species that also experienced steep population declines due to decreasing food supply resulting from modern agriculture.

Keywords

Agri-environment schemes Falco naumanni Margins Prey abundance Prey biomass 

References

  1. Aebischer NJ, Ewald JA (2004) Managing the UK Grey partridge Perdix perdix recovery: population change, reproduction, habitat and shooting. Ibis 146:181–191. doi:10.1111/j.1474-919X.2004.00345.x CrossRefGoogle Scholar
  2. Badih A, Hidalgo J, Ballesta M, Ruano F, Tinaut A (1997) Distribution and phenology of a community of Orthoptera (Insecta) in a dune ecosystem of the southeastern Iberian Peninsula. Zool Baetica 8:31–42Google Scholar
  3. Baessler C, Klotz S (2006) Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric Ecosyst Environ 115:43–50. doi:10.1016/j.agee.2005.12.007 CrossRefGoogle Scholar
  4. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188. doi:10.1016/S0169-5347(03) 00011-9 CrossRefGoogle Scholar
  5. Berggren A, Birath B, Kindvall O (2002) Effect of Corridors and habitat edges on dispersal behavior, movement rates, and movement angles in Roesel’s bush-cricket (Metrioptera roeseli). Conserv Biol 16:1562–1569. doi:10.1046/j.1523-1739.2002.01203.x CrossRefGoogle Scholar
  6. Brickle NW, Harper DGC, Aebischer NJ, Cockayne SH (2000) Effects of agricultural intensification on the breeding success of corn buntings Miliaria calandra. J Appl Ecol 37:742–755. doi:10.1046/j.1365-2664.2000.00542.x CrossRefGoogle Scholar
  7. Bustamante J (1997) Predictive models for Lesser Kestrel Falco naumanni. Distribution, abundance, and extinction in Southern Spain. Biol Conserv 80:153–160. doi:10.1016/S0006-3207(96)00136-X CrossRefGoogle Scholar
  8. Clemente ME, García MD, Presa JJ (1987) Clave de los géneros de saltamontes ibéricos (Orthoptera, Caelifera). Universidad de Murcia, MurciaGoogle Scholar
  9. Crawley MJ (2002) Statistical computing: an introduction to data analysis using S-plus. Wiley, ChichesterGoogle Scholar
  10. Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc Lond B 268:25–29. doi:10.1098/rspb.2000.1325 CrossRefGoogle Scholar
  11. Donald PF, Pisano G, Rayment MD, Pain DJ (2002) The Common Agricultural Policy, EU enlargement and the conservation of Europe’s farmland birds. Agric Ecosyst Environ 89:167–182. doi:10.1016/S0167-8809(01) 00244-4 CrossRefGoogle Scholar
  12. Donázar JA, Negro JJ, Hiraldo F (1993) Foraging habitat selection, land use changes and population decline in the Lesser Kestrel. J Appl Ecol 30:515–522. doi:10.2307/2404191 CrossRefGoogle Scholar
  13. Fernández R, Martín A, Ortega F, Alés EE (1992) Recent changes in landscape structure and function in a Mediterranean region of SW Spain (1950–1984). Landsc Ecol 7:3–18. doi:10.1007/BF02573953 CrossRefGoogle Scholar
  14. Franco AMA, Catry I, Sutherland WJ, Palmeirim J (2004) Do different habitat preference survey methods produce the same conservation recommendations for lesser kestrels? Anim Conserv 7:291–300. doi:10.1017/S1367943004001465 CrossRefGoogle Scholar
  15. Fuller RJ, Gregory RD, Gibbons DW, Marchant JH, Wilson JD, Baillie SR, Carter N (1995) Population declines and range contractions among lowland farmland birds in Britain. Conserv Biol 9:1425–1441. doi:10.1046/j.1523-1739.1995.09061425.x CrossRefGoogle Scholar
  16. Gangwere SK, de Viedma MG, Llorente V (1985) Libro rojo de los ortópteros ibéricos. ICONA, MadridGoogle Scholar
  17. Gottschalk E, Griebeler EM, Waltert M, Muhlenberg M (2003) Population dynamics in the Grey Bush Cricket Platycleis albopunctata (Orthoptera: Tettigoniidae)—what causes interpopulation differences? J Insect Conserv 7:45–58. doi:10.1023/A:1024706030658 CrossRefGoogle Scholar
  18. Gregory RD, Noble DG, Custance J (2004) The state of play of farmland birds: population trends and conservation status of lowland farmland birds in the United Kingdom. Ibis 146:1–13. doi:10.1111/j.1474-919X.2004.00358.x CrossRefGoogle Scholar
  19. Hart JD, Milsom TP, Fisher G, Wilkins V, Moreby SJ, Murray AWA, Robertson PA (2006) The relationship between yellowhammer breeding performance, arthropod abundance and insecticide applications on arable farmland. J Appl Ecol 43:81–91. doi:10.1111/j.1365-2664.2005.01103.x CrossRefGoogle Scholar
  20. Harz K (1969) Die Orthopteren Europas. The Hague, The NetherlandsGoogle Scholar
  21. Hendriks RJJ, de Boer NJ, van Groenendael JM (1999) Comparing the preferences of three herbivore species with resistance traits of 15 perennial dicots: the effect of phylogenetic constraints. Plant Ecol 143:141–152. doi:10.1023/A:1009832621516 CrossRefGoogle Scholar
  22. Hiraldo F, Negro JJ, Donazar JA, Gaona P (1996) A demographic model for a population of the endangered Lesser Kestrel in Southern Spain. J Appl Ecol 33:1085–1093. doi:10.2307/2404688 CrossRefGoogle Scholar
  23. Isenmann P, Debout G (2000) Vineyards harbour a relict population of Lesser Grey Shrike (Lanius minor) in Mediterranean France. J Ornithol 141:435–440Google Scholar
  24. INE (1999) Censo agrario 1999. INE (Instituto Nacional de Estadística), MadridGoogle Scholar
  25. IUCN (1983) The IUCN invertebrate red data book. IUCN, GlandGoogle Scholar
  26. Kleijn D, Sutherland WJ (2003) How effective are European agri-environment schemes in conserving and promoting biodiversity? J Appl Ecol 40:947–969. doi:10.1111/j.1365-2664.2003.00868.x CrossRefGoogle Scholar
  27. Kleijn D, Baquero RA, Clough Y, Diaz M, Esteban J, Fernandez F, Gabriel D, Herzog F, Holzschuh A, Johl R, Knop E, Kruess A, Marshall EJP, Steffan-Dewenter I, Tscharntke T, Verhulst J, West TM, Yela JL (2006) Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol Lett 9:243–254. doi:10.1111/j.1461-0248.2005.00869.x PubMedCrossRefGoogle Scholar
  28. Lemke A, Poehling H-M (2002) Sown weed strips in cereal fields: overwintering site and “source” habitat for Oedothorax apicatus (Blackwall) and Erigone atra (Blackwall) (Araneae: Erigonidae). Agric Ecosyst Environ 90:67–80. doi:10.1016/S0167-8809(01) 00173-6 CrossRefGoogle Scholar
  29. Llusia D, Oñate JJ (2005) Are the conservation requirements of pseudo-steppe birds adequately covered by Spanish agri-environmental schemes? An ex-ante assessment. Ardeola 52:31–43Google Scholar
  30. Marshall EJP, Moonen AC (2002) Field margins in northern Europe: their functions and interactions with agriculture. Agric Ecosyst Environ 89:5–21. doi:10.1016/S0167-8809(01) 00315-2 CrossRefGoogle Scholar
  31. Mathsoft I (2000) S-Plus 2000. SeattleGoogle Scholar
  32. Mattison EHA, Norris K (2005) Bridging the gaps between agricultural policy, land-use and biodiversity. Trends Ecol Evol 20:610–616. doi:10.1016/j.tree.2005.08.011 PubMedCrossRefGoogle Scholar
  33. McCracken DI, Foster GN, Kelly A (1995) Factors affecting the size of leatherjacket (Diptera: Tipulidae) populations in pastures in the west of Scotland. Appl Soil Ecol 2:203–213. doi:10.1016/0929-1393(95) 00048-P CrossRefGoogle Scholar
  34. Morris AJ, Wilson JD, Whittingham MJ, Bradbury RB (2005) Indirect effects of pesticides on breeding yellowhammer (Emberiza citrinella). Agric Ecosyst Environ 106:1–16. doi:10.1016/j.agee.2004.07.016 CrossRefGoogle Scholar
  35. Negro JJ (1997) Lesser Kestrel Falco naumanni. In: Birds of the Western Paleartic Update, vol 1. Oxford University Press, Oxford, pp 49–56Google Scholar
  36. Negro JJ, Donázar JA, Hiraldo F (1993) Home range of Lesser Kestrel during the breeding season. In: Nicholls MK, Clarke R (eds) Biology and conservation of small falcons. The Hawk and the Owl Trust, Canterbury, pp 144–150Google Scholar
  37. Newton I (2004) The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis 146:579–600. doi:10.1111/j.1474-919X.2004.00375.x CrossRefGoogle Scholar
  38. Olmo JM (2002) Atlas de Ortópteros de Catalunya. Generalitat de Catalunya, BarcelonaGoogle Scholar
  39. Peet NB, Gallo-Orsi U (2000) Action plan for the lesser kestrel Falco naumanni. Council of Europe and BirdLife International, CambridgeGoogle Scholar
  40. Pinheiro JC, Bates DM (2002) Mixed-effect models in S and S-plus. Springer, New YorkGoogle Scholar
  41. Potts GR (1986) The Partridge. Collins, LondonGoogle Scholar
  42. Rodriguez C (2004) Factores ambientales relacionados con el exito reproductivo del Cernicalo Primilla. Cambio climatico e intensificacion agraria. Dissertation, University of SalamancaGoogle Scholar
  43. Rodriguez C, Bustamante J (2003) The effect of weather on lesser kestrel breeding success: can climate change explain historical population declines? J Anim Ecol 72:793–810. doi:10.1046/j.1365-2656.2003.00757.x CrossRefGoogle Scholar
  44. Rodriguez C, Johst K, Bustamante J (2006) How do crop types influence breeding success in lesser kestrels through prey quality and availability? A modelling approach. J Appl Ecol 43:587–597. doi:10.1111/j.1365-2664.2006.01152.x CrossRefGoogle Scholar
  45. Ursúa E, Serrano D, Tella JL (2005) Does land irrigation actually reduce foraging habitat for breeding lesser kestrels? The role of crop types. Biol Conserv 122:643–648. doi:10.1016/j.biocon.2004.10.002 CrossRefGoogle Scholar
  46. Voisin J-F (1980) Reflexions a propos d’une methode simple d’echantillonage des peuplements d’orthopteres en milieu ouvert. Acrida 9:159–170Google Scholar
  47. Voisin J-F (1986) Une methode simple pour caracteriser l’abondance des Orthopteres en milieu ouvert. L’Entomologiste 42:113–119Google Scholar
  48. Watzold F, Drechler M, Armstrong CW, Baumgartner S, Grimm V, Huth A, Perrings C, Possingham HP, Shogren JF, Skonhof A, Verboom-Vasiljev J, Wissel C (2006) Ecological-economic modeling for biodiversity management: potential, pitfalls, and prospects. Conserv Biol 20:1034–1041PubMedCrossRefGoogle Scholar
  49. Weibull A-C, Ostman Ã, Granqvist A (2003) Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodivers Conserv 12:1335–1355. doi:10.1023/A:1023617117780 CrossRefGoogle Scholar
  50. Willott SJ (1997) Thermoregulation in four species of British grasshoppers (Orthoptera: Acrididae). Funct Ecol 11:705–713. doi:10.1046/j.1365-2435.1997.00135.x CrossRefGoogle Scholar
  51. Wilson JD, Morris AJ, Arroyo BE, Clark SC, Bradbury RB (1999) A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric Ecosyst Environ 75:13–30. doi:10.1016/S0167-8809(99) 00064-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Estación Biológica de Doñana, CSICSevillaSpain

Personalised recommendations