Biodiversity and Conservation

, Volume 17, Issue 7, pp 1595–1612 | Cite as

Do protected areas in urban and rural landscapes differ in species diversity?

  • Sonja KnappEmail author
  • Ingolf Kühn
  • Volker Mosbrugger
  • Stefan Klotz
Original Paper


Previous studies from Central Europe and North America showed that species richness is higher in urban than in rural landscapes. Do protected areas, which can be found in both city and countryside, reflect this species richness pattern? The impact of urban land-use might reduce conservation success and necessitate special management strategies. We compared species richness and species spatial turnover of selected animal and plant taxa (carabids, butterflies, snails, birds, lichens, mosses, vascular plants) in 30 protected areas in the city of Halle and 56 protected areas in the adjacent rural district of Saalkreis (Central Germany). Species were mapped by experienced biologists within a systematic species inventory. We corrected species numbers for the effects of landscape structure (e.g. size, shape and distance of habitats) which might influence species diversity beyond urbanisation effects. Butterflies, birds and lichens had significantly higher species numbers in the rural protected areas. Species spatial turnover was higher among urban areas than among rural areas or pairs of urban and rural areas for most taxa. Diversity in all taxa depended on the size of a protected area. We discussed these patterns in the context of the general urban-rural species diversity patterns. Our results indicate an increasing isolation of species assemblages with urbanisation and highlight that space for protected areas is even more limited in urban than rural areas. An effective conservation of urban species diversity should include both typical urban and semi-natural habitats to cover the full range of species living in cities.


Biodiversity Conservation planning Germany Isolation Landscape structure Urban ecology Urban–rural gradient 



Analysis of covariance


Analysis of variance


Above sea level


Mean perimeter-to-area ratio


Mean patch size


Distance to nearest neighbour


Mean distance to nearest similar habitat


Number of patches



This study is part of a diploma thesis conducted at the Helmholtz Centre for Environmental Research—UFZ in cooperation with the University of Tübingen. We thank Dieter Frank and Kathrin Hünig (Environmental State Agency Saxony-Anhalt), Yvonne Brand (Environmental Agency Saalkreis), Thomas Katterle (Environmental Agency Halle / Saale) and Andreas Pohl (Office for Environmental Planning, Halle / Saale) for providing data on species, protected areas and land-use. Special thanks go to Regine Stordeur, Jens Stolle (University of Halle / Salle) and Frank Müller (University of Dresden) for reviewing species lists. Susanne Fritz (Imperial College London) and David Roy (CEH Monks Wood) improved our English and an anonymous referee provided valuable suggestions.


  1. Araújo MB (2003) The coincidence of people and biodiversity in Europe. Glob Ecol Biogeogr 12:5–12CrossRefGoogle Scholar
  2. Blair RB (1999) Birds and butterflies along an urban gradient: surrogate taxa for assessing biodiversity? Ecol Appl 9:164–170CrossRefGoogle Scholar
  3. Buschendorf J, Klotz S (1995) Geschützte Natur in Halle (Saale). Flora und Fauna der Schutzgebiete. Teil 1: Fauna der Schutzgebiete. Umweltamt, Halle (Saale)Google Scholar
  4. Buschendorf J, Klotz S (1996) Geschützte Natur in Halle (Saale). Flora und Fauna der Schutzgebiete. Teil 2: Flora der Schutzgebiete. Umweltamt, Halle (Saale)Google Scholar
  5. Chocholouskova Z, Pysek P (2003) Changes in composition and structure of urban flora over 120 years: a case study of the city of Plzen. Flora 198:366–376Google Scholar
  6. Cincotta RP, Wisnewski J, Engelman R (2000) Human population in the biodiversity hotspots. Nature 404:990–992PubMedCrossRefGoogle Scholar
  7. Clergeau P, Croci S, Jokimäki J, Kaisanlathi-Jokimäki M-L, Dinetti M (2006) Avifauna homogenisation by urbanisation: analysis at different European latitudes. Biol Conserv 127:336–344CrossRefGoogle Scholar
  8. Crawley MJ (2002) Statistical computing. An introduction to data analysis using S-plus. Wiley, ChichesterGoogle Scholar
  9. Deutschewitz K, Lausch A, Kühn I, Klotz S (2003) Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Glob Ecol Biogeogr 12:299–311CrossRefGoogle Scholar
  10. Dobson AP, Rodriguez JP, Roberts WM (2001) Synoptic tinkering: integrating strategies for large-scale conservation. Ecol Appl 11:1019–1026CrossRefGoogle Scholar
  11. Ebel F, Schönbrodt R (1988) Pflanzen- und Tierarten der Naturschutzobjekte im Saalkreis (Bez. Halle) Teil 2. Rat des Saalkreises—Kulturbund der DDR, Botanischer Garten der Martin-Luther-Universität Halle, Halle (Saale)Google Scholar
  12. Ebel F, Schönbrodt R (1991) Pflanzen- und Tierarten der Naturschutzobjekte im Saalkreis 1.Ergänzungsband. Landratsamt des Saalkreises, Botanischer Garten der Martin-Luther-Universität Halle, Landesamt für Umweltschutz Sachsen-Anhalt, Halle (Saale)Google Scholar
  13. Ebel F, Schönbrodt R (1993a) Pflanzen- und Tierarten der Naturschutzobjekte im Saalkreis 2. Ergänzungsband. Landratsamt des Saalkreises, Landesamt für Umweltschutz Sachsen-Anhalt, Halle (Saale)Google Scholar
  14. Ebel F, Schönbrodt R (1993b) Rote-Liste-Arten der Naturschutzobjekte im Saalkreis. Verband zur Landschaftspflege und Einrichtung eines Naturparks „Unteres Saaletal” e.V., Landratsamt des Saalkreises, Landesamt für Umweltschutz Sachsen-Anhalt, Halle (Saale)Google Scholar
  15. Elkie P, Rempel R, Carr A (1999) Patch analyst. Users guide. A tool for quantifying landscape structure. Ontario. Available via Cited June 2005
  16. Eversham BC, Roy DB, Telfer MG (1996) Urban, industrial and other manmade sites as analogues of natural habitats for Carabidae. Ann Zool Fenn 33:149–156Google Scholar
  17. Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227PubMedCrossRefGoogle Scholar
  18. Gilbert OL (1968) Bryophytes as indicators of air pollution in the Tyne valley. New Phytol 67:15–30CrossRefGoogle Scholar
  19. Haeupler H (1975) Statistische Auswertungen von Punktrasterkarten der Gefäßpflanzenflora Süd-Niedersachsens. Scripta Geobotanica 8:1–141Google Scholar
  20. Herbst H, Herbst V (2006) The development of an evaluation method using a geographic information system to determine the importance of wasteland sites as urban wildlife areas. Landsc Urban Plan 77:178–195CrossRefGoogle Scholar
  21. Hoechstetter S, Wahr J, Knapp S, Klotz S, Uhl D, Thiv M, Mosbrugger V (2005) Muster der Biodiversität von Gefäßpflanzen in Baden-Württemberg - eine geostatistische Analyse abiotischer Einflussfaktoren. Stuttgarter Beitr Naturk 676Google Scholar
  22. Hope D, Gries C, Zhu WX, Fagan WF, Redman CL, Grimm NB, Nelson AL, Martin C, Kinzig A (2003) Socioeconomics drive urban plant diversity. Proc Natl Acad Sci USA 100:8788–8792PubMedCrossRefGoogle Scholar
  23. Jenness J (2004) Nearest features (nearfeat.avx) extension for ArcView 3.x, v. 3.8a. Jenness Enterprises. Available via Cited June 2005
  24. Klotz S (1990) Species/area and species/inhabitants relations in European cities. In: Sukopp H, Hejný S (eds) Urban ecology: plants and plant communities in urban environment. SPB Academic Publishing, The Hague, pp 99–103Google Scholar
  25. Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence-absence data. J Anim Ecol 72:367–382CrossRefGoogle Scholar
  26. Kühn I, Brandl R, Klotz S (2004) The flora of German cities is naturally species rich. Evol Ecol Res 6:749–764Google Scholar
  27. Landesamt für Umweltschutz Sachsen-Anhalt (2005a) Datenbank der Farn- und Blütenpflanzen Sachsen-Anhalts. Landesamt für Umweltschutz Sachsen-Anhalt. Halle (Saale)Google Scholar
  28. Landesamt für Umweltschutz Sachsen-Anhalt (2005b) Datenbank der Flechten Sachsen-Anhalts. Landesamt für Umweltschutz Sachsen-Anhalt. Halle (Saale)Google Scholar
  29. Landesamt für Umweltschutz Sachsen-Anhalt (2005c) Datenbank der Moose Sachsen-Anhalts. Landesamt für Umweltschutz Sachsen-Anhalt. Halle (Saale)Google Scholar
  30. Landsberg H (1981) The urban climate. Academic Press, New YorkGoogle Scholar
  31. Lang G (1994) Quartäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. Gustav Fischer Verlag, JenaGoogle Scholar
  32. Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ (2001) The geographical structure of British bird distributions: diversity, spatial turnover and scale. J Anim Ecol 70:966–979CrossRefGoogle Scholar
  33. Lenzin H, Meier-Küpfer H, Schwegler S, Baur B (2007) Hafen- und Gewerbegebiete als Schwerpunkte pflanzlicher Diversität innerhalb urban-industrieller Ökosysteme. Naturschutz und Landschaftsplanung 39:86–93Google Scholar
  34. Leveau CM, Leveau LM (2005) Avian community response to urbanization in the Pampean region, Argentina. Ornitol Neotrop 16:503–510Google Scholar
  35. Liu J, Daily GC, Ehrlich PR, Luck GW (2003) Effects of household dynamics on resource consumption and biodiversity. Nature 421:530–533PubMedCrossRefGoogle Scholar
  36. Lososová Z, Chytrý M, Kühn I, Hájek O, Horáková V, Pyšek P, Tichý L (2006) Patterns of plant traits in annual vegetation of man-made habitats in central Europe. Perspect Plant Ecol 8:69–81CrossRefGoogle Scholar
  37. MacArthur R, Wilson EO (1967) The Theory of Island Biogeography. Princeton University PressGoogle Scholar
  38. Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between and reconciliation of ‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–671CrossRefGoogle Scholar
  39. Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, OxfordGoogle Scholar
  40. McGarigal K, Marks B (1994) Fragstats—spatial pattern analysis program for quantifying landscape structures. USDA For. Serv. Gen. Tech. Rep. PNW-351. Available via Cited Dec 2005
  41. McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890CrossRefGoogle Scholar
  42. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260CrossRefGoogle Scholar
  43. Ministerium für Raumordnung LuUdLS-A (1996) Agraratlas des Landes Sachsen-Anhalt. Landwirtschaftliches Gutachten in Karten, Texten, Übersichten. Ministerium für Raumordnung,Landwirtschaft und Umwelt des Landes Sachsen-Anhalt, MagdeburgGoogle Scholar
  44. Müller-Westermeier G, Kreis A, Dittmann E (1999) Klimaatlas Bundesrepublik Deutschland. Teil 1. Lufttemperatur, Niederschlagshöhe, Sonnenscheindauer. Deutscher Wetterdienst, Offenbach am MainGoogle Scholar
  45. Müller-Westermeier G, Kreis A, Dittmann E (2001) Klimaatlas Bundesrepublik Deutschland. Teil 2. Verdunstung, Maximumtemperatur, Minimumtemperatur, Kontinentalität. Deutscher Wetterdienst, Offenbach am MainGoogle Scholar
  46. Nebbia AJ, Zalba SM (2007) Designing nature reserves: traditional criteria may act as misleading indicators of quality. Biodivers Conserv 16:223–233CrossRefGoogle Scholar
  47. Neumeister H, Peklo P, Niehus B (1997) Umweltbelastungen in der Region Leipzig-Halle-Bitterfeld und deren Bewertung. Immissionsbedingte Stoffeinträge. In: Feldmann R, Henle K, Auge H, Flachowsky J, Klotz S, Krönert R (eds) Regeneration und nachhaltige Landnutzung. Konzepte für belastete Regionen Springer-Verlag, Berlin, pp 35–41Google Scholar
  48. Niemelä J (1999a) Is there a need for a theory of urban ecology? Urban Ecosyst 3:57–65CrossRefGoogle Scholar
  49. Niemelä J (1999b) Ecology and urban planning. Biodivers Conserv 8:119–131CrossRefGoogle Scholar
  50. Niemelä J, Kotze DJ, Venn S, Penev L, Stoyanov I, Spence J, Hartley D, de Oca EM (2002) Carabid beetle assemblages (Coleoptera, Carabidae) across urban–rural gradients: an international comparison. Landsc Ecol 17:387–401CrossRefGoogle Scholar
  51. Oke TR (1982) The Energetic Basis of the Urban Heat-Island. Quart J R Meteorol Soc 108:1–24Google Scholar
  52. Pautasso M (2007) Scale dependence of the correlation between human population presence and vertebrate and plant species richness. Ecol Lett 10:16–24PubMedCrossRefGoogle Scholar
  53. Peterson J, Langner U (1992) Berichte des Landesamtes für Umweltschutz Sachsen-Anhalt. Heft 4. Katalog der Biotoptypen und Nutzungstypen für die CIR-luftbildgestützte Biotoptypen- und Nutzungstypenkartierung im Land Sachsen-Anhalt. Landesamt für Umweltschutz Sachsen-Anhalt, Halle (Saale)Google Scholar
  54. Pickett STA, Cadenasso ML, Grove JM, Nilson CH, Pouyat R, Zipperer WC, Costanza R (2001) Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu Rev Ecol Syst 32:127–157CrossRefGoogle Scholar
  55. Pohl A (2003) Kartierschlüssel für Biotoptypen in der Stadt Halle (Saale). Fachbereich Stadtentwicklung und Stadtplanung, Landschafts- und Grünordnungsplanung, Halle (Saale)Google Scholar
  56. Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405:212–219PubMedCrossRefGoogle Scholar
  57. Pyšek P (1993) Factors affecting the diversity of flora and vegetation in central European settlements. Vegetatio 106:89–100CrossRefGoogle Scholar
  58. Pyšek P (1995) Approaches to studying spontaneous settlement flora and vegetation in Central Europe: a review. In: Sukopp H, Numata M, Huber A (eds) Urban Ecology as the Basis of Urban Planning The Hague: SPB Academic Publishing, pp. 23–29Google Scholar
  59. Pyšek P (1998) Alien and native species in Central European urban floras: a quantitative comparison. J Biogeogr 25:155–163CrossRefGoogle Scholar
  60. R Development Core Team (2004) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. Available via Cited April 2005
  61. Röhr M, Lohse H, Ludwig R (1983) Statistik für Soziologen, Pädagogen, Psychologen und Mediziner, Band 2—Statistische Verfahren. Verlag Harri Deutsch, Frankfurt am MainGoogle Scholar
  62. Rosenzweig M (1995) Species diversity in space and time. Cambridge University Press, CambridgeGoogle Scholar
  63. Sandström UG, Angelstam P, Mikusinski G (2006) Ecological diversity of birds in relation to the structure of urban green space. Landsc Urban Plan 77:39–53CrossRefGoogle Scholar
  64. Seaward MRD (1982) Lichen ecology of changing urban environments. In: Bornkamm R, Lee JA, Seaward MRD (eds) Urban Ecology. Blackwell Scientific PublicationsGoogle Scholar
  65. Stadt Halle (2003a) Digitale Karte der Schutzgebiete 1:20 000. Fachbereich Umwelt. Halle (Saale)Google Scholar
  66. Stadt Halle (2003b) Digitale Karte der flächendeckenden Biotoptypenkartierung 1:5 000. Fachbereich Stadtentwicklung und Stadtplanung. Halle (Saale)Google Scholar
  67. Strauss B, Biedermann R (2005) The use of habitat models in conservation of rare and endangered leafhopper species (Hemiptera, Auchenorrhyncha). J Insect Conserv 9:245–259CrossRefGoogle Scholar
  68. Von Haaren C, Reich M (2006) The German way to greenways and habitat networks. Landsc Urban Plan 76:7–22CrossRefGoogle Scholar
  69. Walters SM (1970) The next twenty years. In: Perring F (ed) The flora of a changing Britain. Classey, Hampton, pp 136–141Google Scholar
  70. Wania A, Kühn I, Klotz S (2006) Plant richness patterns in agricultural and urban landscapes in Central Germany—spatial gradients of species richness. Landsc Urban Plan 75:97–110CrossRefGoogle Scholar
  71. Warnes GR (2006) gmodels: Various R programming tools for model fitting. Includes R source code and/or documentation contributed by Bolker B, Lumley T, Johnson RC. R package version 2.13.0. Available via, Cited Dec 2006
  72. Whittaker RH (1972) Evolution and Measurement of species diversity. Taxon 21:213–251CrossRefGoogle Scholar
  73. Williams NSG, Morgan JW, McDonnell MJ, Mccarthy MA (2005) Plant traits and local extinctions in natural grasslands along an urban–rural gradient. J Ecol 93:1203–1213CrossRefGoogle Scholar
  74. Wittig R (1998) Lebensraumveränderung und Rückgang von Wildpflanzen in Städten und Dörfern—Gefährdungsursachen und Handlungsbedarf. Schr -R f Vegetationskunde 29:165–171Google Scholar
  75. Wittig R (2002) Siedlungsvegetation. Ulmer, StuttgartGoogle Scholar
  76. Zobel M (1997) The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends Ecol Evol 12:266–269CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sonja Knapp
    • 1
    • 2
    Email author
  • Ingolf Kühn
    • 1
  • Volker Mosbrugger
    • 2
    • 3
  • Stefan Klotz
    • 1
  1. 1.Department of Community Ecology (BZF) UFZ – Helmholtz Centre for Environmental ResearchHalleGermany
  2. 2.Institute for GeosciencesUniversity of TübingenTübingenGermany
  3. 3.Senckenberg Research Institute and Natural History MuseumFrankfurtGermany

Personalised recommendations