Biodiversity and Conservation

, Volume 17, Issue 11, pp 2617–2625 | Cite as

Age–size–habitat relationships for Polylepis australis: dealing with endangered forest ecosystems

  • Ma. Laura Suarez
  • Daniel Renison
  • Paula Marcora
  • Isabell Hensen
Original Paper

Abstract

Assessing tree ages is important for the understanding of forest recruitment patterns and tree growth. However, little experience exists in the subtropics and accurate aging usually involves potentially damaging techniques such as tree coring or even the use of entire cross sections, which is not recommendable in endangered species or ecosystems. We provide an example of how age may be predicted on the basis of tree size and site conditions, using Polylepis australis of Central Argentina. Our study was conducted in two entire river basins where 96 independent trees were successfully cored for age analysis. Site and tree characteristics were registered and tree age determined through standard dendrochronological techniques. The multiple regression procedure selected tree circumference and proportion of rock under the tree canopy as significant variables explaining 48% of the variation in number of growth rings. Trees surrounded by rock clearly grew slower than those surrounded by a higher proportion of soil and vegetation. A comparison with a one site study shows that the ability to predict P. australis age is clearly reduced when geographical range is extended but the explanatory power of our model is still high enough for certain applications and within the range of other one site studies. We suggest that tree size and site characteristics may be used to predict age in other subtropical mountain forests with a well marked growth season.

Keywords

Age–size relationship Site characteristics Rock cover Endangered ecosystems 

References

  1. Acosta A (1986) Estructura poblacional de Polylepis australis. In: MAB 6: Efecto de las actividades humanas sobre los ecosistemas montañosos y de tundra. MAB-PNUMA, pp 392–401Google Scholar
  2. Argollo J, Soliz C, Villalba R (2004) Potencialidad dendrocronológica de Polylepis tarapacana en los Andes Centrales de Bolivia. Eco Bol 29:5–24Google Scholar
  3. Brotherson JD, Carman JG, Szyska LA (1984) Stem-diameter age relationships of Tamarix ramosissima in Central Utah. J Range Manage 34:362–364CrossRefGoogle Scholar
  4. Cabido MR (1985) Las comunidades vegetales de la Pampa de Achala, Sierras de Córdoba, Argentina. Doc Phytosociol 9:431–443Google Scholar
  5. Cingolani AM, Cabido MR, Renison D, Solís Neffa V (2004) Combined effects of environment and grazing on vegetation structure in Argentine granite grasslands. J Veg Sci 14:223–232CrossRefGoogle Scholar
  6. Cingolani A, Renison D, Tecco P, Gurvich D, Cabido M (2007) Predicting cover types in a mountain range with long evolutionary grazing history: a GIS approach. J Biogeog. doi: 10.1111/j.1365-2699.2007.01807.x
  7. Duncan RP (1989) An evaluation of errors in tree age estimates based on increments cores in Kahukatea (Dacrycarpus dacrydioides). N Z J Nat Sci 16:31–37Google Scholar
  8. Echeverría C, Lara A (2004) Growth patterns of secondary Nothofagus oblique—N. alpina forests in southern Chile. For Ecol Manage 195:29–43CrossRefGoogle Scholar
  9. Ellenberg H (1979) Man’s influence on tropical mountain ecosystems in South America. J Ecol 67:401–416CrossRefGoogle Scholar
  10. Enrico L, Funes G, Cabido MR (2004) Regeneration of Polylepis australis Bitt. in mountains of central Argentina. For Ecol Manage 190:301–309CrossRefGoogle Scholar
  11. Fjeldså J, Kessler M (1996) Conserving the biological diversity of Polylepis woodlands of the highland of Peru and Bolivia. A contribution to sustainable natural resource management in the Andes. NORDECO, CopenhagenGoogle Scholar
  12. Fritts HC (1971) Dendroclimatology and dendroecology. Quaternary Res 1:419–449CrossRefGoogle Scholar
  13. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  14. Gustell SL, Johnson EA (2002) Accurately ageing trees and examining their height-growth rates: implications for interpreting forest dynamics. J Ecol 90:153–166CrossRefGoogle Scholar
  15. Grau HR, Easdale TA, Paolini L (2003) Subtropical dendroecology-dating disturbances and forest dynamics in northwestern Argentina montane ecosystems. For Ecol Manage 177:131–143CrossRefGoogle Scholar
  16. Hensen I (1995) Die vegetation von Polylepis-Wäldern der Ostkordillere Boliviens. Phytocoenologia 25:235–277Google Scholar
  17. Hensen I (2002) Impacts of anthropogenic activity on the vegetation of Polylepis woodland in the region of Cochabamba, Bolivia. Ecotropica 8:183–203Google Scholar
  18. Kessler M (2000) Observations on a human-induced fire event at a humid timberline in the Bolivian Andes. Ecotropica 6:83–93Google Scholar
  19. Kessler M (2002) The “Polylepis problem”: where do we stand? Ecotropica 8:97–110Google Scholar
  20. Lauer W, Rafiqpoor MD, Theisen I (2001) Physiogeographie, Vegetation und Syntaxonomie der Flora des Páramo de Papallacta (Ostkordillere Ecuador). Erdwissenschaftliche Forschung 39, StuttgartGoogle Scholar
  21. Lieberman D, Lieberman M, Hartshon G, Peralta R (1985) Growth rates and age–size relationships of tropical wet forest trees in Costa Rica. J Trop Ecol 1:97–109CrossRefGoogle Scholar
  22. Loewenstein EF, Johnson PS, Garrett HE (2000) Age and diameter structure of a managed uneven-aged oak forest. Can J For Res 31:1060–1070CrossRefGoogle Scholar
  23. Marcora P, Hensen I, Renison D, Seltmann P, Wesche K The performance of Polylepis australis trees along their entire altitudinal range: implications of climate change for their conservation. Divers Distrib, in pressGoogle Scholar
  24. McConnell BM, Smith JG (1963) Estimation of bitterbrush age from stem-diameter measurements. Ecology 44:579–581CrossRefGoogle Scholar
  25. Morales MS, Villalba R, Grau HR, Paolini L (2004) Rainfall-controlled tree growth in high-elevation subtropical treelines. Ecology 85:3080–3089CrossRefGoogle Scholar
  26. Morey HF (1936) Age–size relationships of hearts content, a virgin forest in northwestern Pennsylvania. Ecology 17:251–257CrossRefGoogle Scholar
  27. Norton DA, Palmer JG, Odgen J (1987) Dendroecological studies in New Zealand. 1. An evaluation of tree age estimates based on increment cores. N Z J Bot 25:373–383Google Scholar
  28. O’Brien ST, Hubbell SP, Spiro P, Condit R, Foster RB (1995) Diameter, height, crown, and age relationship in eight neotropical tree species. Ecology 76:1926–1939CrossRefGoogle Scholar
  29. Perryman BL, Olson RA (2000) Age-stem diameter relationships of big sagegrush and their management implications. J Range Manage 53:352–346Google Scholar
  30. Renison D, Cingolani AM, Suarez R (2002) Efectos del fuego sobre un bosquecillo de Polylepis australis (Rosaceae) en las montañas de Córdoba, Argentina. Rev Chil Hist Nat 75:719–727CrossRefGoogle Scholar
  31. Renison D, Cingolani AM, Suarez R, Menoyo E, Coutsiers C, Sobral A, Hensen I (2005) The restoration of degraded mountain forests: effects of seed provenance and microsite characteristics on Polylepis australis seedling survival and growth in Central Argentina. Rest Ecol 13:129–135CrossRefGoogle Scholar
  32. Renison D, Hensen I, Suarez R, Cingolani AM (2006) Cover and growth habit of Polylepis woodlands and shrublands in the mountains of central Argentina: human or environmental influence? J Biogeogr 33:876–887CrossRefGoogle Scholar
  33. Renison D, Bellis L, Guzmán GF, Grau R, Pacheco S, Rivera L, Politi N, Martin E, Cuyckens E, Marcora P, Robledo G, Cingolani AM, Perasso L, Cornell F, Dominguez J, Landi M, Hensen I Estado de conservación de los bosques Argentinos de Polylepis y su avifauna. In: “Una Contribución al Conocimiento de los Bosques Altoandinos de Polylepis: Distribución, Diversidad y Estado Actual de los Bosques más Altos del Mundo”. American Bird Conservancy—Comunidad Andina, Lima, Perú, in pressGoogle Scholar
  34. Roig F, Fernández M, Gareca E, Altamirano S, Monge S (2001) Dendrochronological studies in the humid puna environments of Bolivia. Rev Bol Ecol 9:3–13Google Scholar
  35. Rozas V (2003) Tree age estimates in Fagus sylvatica and Quercus robur: testing previous and improved methods. Plant Ecol 167:193–212CrossRefGoogle Scholar
  36. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, ChicagoGoogle Scholar
  37. Teich I, Cingolani AM, Renison D, Hensen I, Giorgis M (2005) Do domestic herbivores retard Polylepis australis Bitt. woodland recovery in the mountains of Córdoba, Argentina? For Ecol Manage 219:229–241CrossRefGoogle Scholar
  38. Tyrrell LE, Crow TR (1994) Structural characteristics of old-growth Hemlock-Hardwood forests in relation to age. Ecology 75:370–386CrossRefGoogle Scholar
  39. UNEP-WCMC (2004) United Nations Environment Programme. World Conservation Monitoring Center; http://www.unep-wcmc.org
  40. Veblen TT (1986) Age and size structure of subalpine forests in the Colorado Front Range. Bol Torr Bot Club 113:225–356CrossRefGoogle Scholar
  41. Villalba R, Veblen TT (1997) Improving estimates of total tree ages based on increment core samples. Ecoscience 4:534–542Google Scholar
  42. Villalba R, Veblen TT, Ogden J (1994) Climatic influences on the growth of subalpine trees in the Colorado front range. Ecology 75:1450–1462CrossRefGoogle Scholar
  43. Wong C, Lertzman P (2001) Errors in estimating tree age: implications for studies of stand dynamics. Can J For Res 31:1262–1271CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ma. Laura Suarez
    • 1
  • Daniel Renison
    • 2
  • Paula Marcora
    • 2
  • Isabell Hensen
    • 3
  1. 1.Laboratorio Ecotono, Centro Regional Universitario BarilocheUniversidad Nacional del ComahueBarilocheArgentina
  2. 2.Cátedra de Ecología, FCEFyNUniversidad Nacional de CórdobaCordobaArgentina
  3. 3.Institute of Biology/Geobotany and Botanical GardenMartin-Luther-University Halle-WittenbergHalleGermany

Personalised recommendations