Biodiversity and Conservation

, Volume 17, Issue 6, pp 1319–1351 | Cite as

When family matters: an analysis of Thelotremataceae (Lichenized Ascomycota: Ostropales) as bioindicators of ecological continuity in tropical forests

  • Eimy Rivas Plata
  • Robert Lücking
  • H. Thorsten Lumbsch
Original Paper

Abstract

We analysed patterns of habitat and microhabitat preferences of 19 families (comprising 135 genera and 950 species) of crustose, corticolous lichens in Costa Rica (Arthoniaceae, Arthopyreniaceae, Coenogoniaceae, Graphidaceae, Lecanoraceae, Letrouitiaceae, Monoblastiaceae, Pertusariaceae, Physciaceae, Pilocarpaceae, Porinaceae, Pyrenulaceae, Ramalinaceae, Roccellaceae, Strigulaceae, Teloschistaceae, Thelenellaceae, Thelotremataceae, Trypetheliaceae), in order to test whether Thelotremataceae are suitable predictors of undisturbed tropical rain forest and can be used as bioindicators of ecological continuity. The dataset consisted of 12,215 specimen samples and six environmental parameters recorded for each sample (altitude, degree of seasonality, vegetation type, disturbance level, substrate nature, light exposure), which were analysed by a multivariate approach using principal component analysis (PCA). The analysis showed that three of the 19 families, Letrouitiaceae, Porinaceae, and Thelotremataceae, showed significant preferences for undisturbed primary to old growth secondary forest, fully shaded to semi-exposed microhabitats, and the bark of mature tree trunks, parameters assumed to be correlated with ecological continuity of closed rain forest habitats. Thelotremataceae had broader altitudinal range than Letrouitiaceae and Porinaceae and significantly higher genus and species diversity (16 genera, 130 species) compared to Porinaceae (4 genera, 40 species) and Letrouitiaceae (1 genus, 5 species). Our results support the hypothesis that Thelotremataceae perform best as predictors of undisturbed dry and lowland to montane rain forest and are the most suitable lichen bioindicators of ecological continuity in these ecosystems. In contrast, Lecanoraceae, Pertusariaceae, Physciaceae, and Teloschistaceae, were found to be predictors of disturbed and pioneer (micro-)habitats. We also found that, among a variety of parameters tested, the Index of Ecological Continuity (IEC), adapted to the use of Thelotremataceae in tropical forests, performs best in terms of predicting disturbance levels and site history. A semi-taxonomic approach identifying morphotypes rather than genera or species yielded the same results, making this method suitable for a broader spectrum of potential users.

Keywords

Crustose Corticolous Costa Rica Lichen families 

References

  1. Achard F, Eva H, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002PubMedGoogle Scholar
  2. Aide TM, Zimmermann JK, Pascarella JB, Rivera L, Marcano-Vega H (2000) Forest regeneration in a chronosequence of tropical abandoned pastures: implications for restoration ecology. Restor Ecol 8:328–338Google Scholar
  3. Alverson WS, Rodríguez LO, Moskovits DK (eds) (2001) Rapid biological inventories 02: Perú: Biabo Cordillera Azul. The Field museum, ChicagoGoogle Scholar
  4. Arroyo-Mora JP, Sánchez-Azofeifa GA, Rivard B, Calvo JC, Janzen DH (2005) Dynamics in landscape structure and composition for the Chorotega region, Costa Rica, from 1960 to 2000. Agric Ecosys Environ 106:27–39Google Scholar
  5. Balmford A, Whitten T (2003) Who should pay for tropical conservation, and how could the costs be met? Oryx 37:238–250Google Scholar
  6. Barrow E, Timmer D, White S, Maginnis S (2002) Forest Landscape Restoration: Building Assets for People and Nature – Experience from East Africa. World Conservation Union (IUCN), CambridgeGoogle Scholar
  7. Bartholmess H, Erhardt W, Frahm JP, Franzen-Reuter I, John V, Kirschbaum U, Türk R, Windisch U, Wirth V (2004) Biologische Messverfahren zur Ermittlung und Beurteilung der Wirkung von Luftverunreinigungen auf Flechten (Bioindikation). Kartierung der Diversität epiphytischer Flechten als Indikator für die Luftgüte. VDI 3957, Part 13. Verein Deutscher Ingenieure (VDI), DüsseldorfGoogle Scholar
  8. Bonnie R, Schwartzman S, Oppenheimer M, Bloomfield J (2000) Counting the costs of deforestation. Science 288:1763–1764PubMedGoogle Scholar
  9. Brentrup F, Küsters J, Lammel J, Kuhlmann H (2002) Life cycle impact assessment of land use based on the hemeroby concept . Int J Life Cycle Assess 7:339–348Google Scholar
  10. Brienen RJW (2005) Tree rings in the tropics: a study on growth and ages of Bolivian rain forest trees. Tekst. Proefschrift, Universiteit UtrechtGoogle Scholar
  11. Brook BW, Bradshaw CJA, Koh LP, Sodhi NS (2006) Momentum drives the crash: mass extinction in the tropics. Biotropica 38:302–305Google Scholar
  12. Cáceres MES, Lücking R, Rambold G (2007a) Corticolous microlichens in northeastern Brazil: Habitat differentiation between coastal Mata Atlântica, Caatinga and Brejos de Altitude. The Bryologist (in press)Google Scholar
  13. Cáceres MES, Lücking R, Rambold G (2007b) Phorophyte specificity and environmental parameters as determinants for species composition, richness and area cover in corticolous crustose lichen communities in the Atlantic rainforest of northeastern Brazil. Mycological Progress (in press)Google Scholar
  14. Cáceres MES, Lücking R, Rambold G (2007c) Efficiency of sampling methods for accurate estimation of species richness: Corticolous microlichens in the Atlantic rainforest of northeastern Brazil. Ecotropica (in press)Google Scholar
  15. Caro TM, O’Doherty G (1999) On the use of surrogate species in conservation biology. Conserv Biol 13:805–814Google Scholar
  16. Chaves JL, Lücking R, Sipman HJM, Umaña L, Navarro E (2004) A first assessment of the ticolichen biodiversity inventory in Costa Rica: the genus Dictyonema (Polyporales: Atheliaceae). Bryologist 107:242–249Google Scholar
  17. Chazdon RL, Fetcher N (1984) Light environments of tropical forests. In: Medina E, Mooney HA, Vasquez-Yanes C (eds) Physiological Ecology of Plants of the Wet Tropics. W. Junk, The Hague, pp. 27–36Google Scholar
  18. Chesson P (2000) Mechanisms of maintenance of species diversity. Ann Rev Ecol Sys 31:343–366Google Scholar
  19. Clark DA, Clark DB (2001) Getting to the canopy: Tree height growth in a neotropical rain forest. Ecology 82:1460–1472CrossRefGoogle Scholar
  20. Clark DB, Clark DA, Rich PM, Weiss WB, Oberbauer SB (1996) Landscape-scale evalu-ation of understory light and canopy structure: methods and application in a neotropical low-land rain forest. Can J For Res 26:747–757Google Scholar
  21. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310PubMedGoogle Scholar
  22. Cornelissen JHC, Ter Steege H (1989) Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen forest of Guyana. J Trop Ecol 5:131–150Google Scholar
  23. Cranston PS, Trueman JWH (1997) ‘Indicator’ organism groups in invertebrate biodiversity assessment. Mem Mus Vic 562:267–274Google Scholar
  24. Cunningham S, Read J (2003) Comparison of temperate and tropical rainforest tree species: growth responses to temperature. J Biogeogr 30:143–153Google Scholar
  25. Curran LM, Caniago I, Paoli GD, Astiani D, Kusneti M, Leighton M, Nirarita CE, Haeruman H (1999) Impact of El Niño and logging on canopy tree recruitment in Borneo. Science 286:2184–2188PubMedGoogle Scholar
  26. Dalton R (2006) Biodiversity: Cashing in on the rich coast. Nature 442:567–569Google Scholar
  27. DeLeo GA, Levin S (1997) The multifaceted aspects of ecosystem integrity. Conserv Ecol 1:3Google Scholar
  28. Defries RS, Houghton RA, Hansen MC, Field CB, Skole D, Townshend J (2002) Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 90s. Proc Natl Acad Sci USA 99:14256–14261PubMedGoogle Scholar
  29. Denslow JS (1987) Tropical rainforest gaps and tree species diversity. Ann Rev Ecol Sys 18:431–451Google Scholar
  30. Di Stéfano JF, Ielsen VN, Hoomans J, Fournier LA (1996) Regeneración de la vegetación arbórea en una pequeña reserva forestal urbana del premontano húmedo, Costa Rica. Rev Biol Trop 44:575–580PubMedGoogle Scholar
  31. Ehrlich PR (1996) Conservation in temperate forests: what do we need to know and do? For Ecol Manage 851:9–19Google Scholar
  32. Ehrlich PR, Ehrlich AH (1981) Extinction: the causes and consequences of the dissappearance of species. Random House, New YorkGoogle Scholar
  33. Faith DP, Walker PA (1996a) Environmental diversity: on the best-possible use of surrogate data for assessing the relative biodiversity of sets of areas. Biodivers Conserv 54:399–415Google Scholar
  34. Faith DP, Walker PA (1996b) How do indicator groups provide information about the relative biodiversity of different sets of areas?: on hotspots, complementarity and pattern-based approaches. Biodivers Lett 31:18–25Google Scholar
  35. FAO (1981) Los Recursos Forestales de la América Tropical. Proyecto de Evaluación de los Recursos Forestales Tropicales. FAO, RomeGoogle Scholar
  36. Fearnside PM (2000) Global warming and tropical land-use change: Greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Clim Change 46:115–145Google Scholar
  37. Fearnside PM (2001) Saving tropical forests as a global warming countermeasure: An issue that divides the environmental movement. Ecol Econ 39:167–184Google Scholar
  38. Fearnside PM, Laurance WF (2004) Tropical deforestation and greenhouse gas emissions. Ecol Appl 14:982–986Google Scholar
  39. Flather CH, Wilson KR, Dean DJ, McComb WC (1997) Identifying gaps in conservation networks: Of indicators and uncertainty in geographic-based analyses. Ecol Appl 72:531–542Google Scholar
  40. Floren A, Linsenmair KE (2005) The importance of primary tropical rain forest for species diversity: an investigation using arboreal ants as an example. Ecosystems 8:559–567Google Scholar
  41. Frisch A, Kalb K, Grube M (2006) Contributions towards a new systematics of the lichen family Thelotremataceae. Bibl Lichenol 92:1–556Google Scholar
  42. Gauslaa Y, Solhaug K-A (1996) Differences in the susceptibility to light stress between epiphytic lichens of ancient and young boreal forest stands. Funct Ecol 10:344–354Google Scholar
  43. Gómez LD (1986) Vegetación de Costa Rica. In: Gómez LD (ed) Vegetación y Clima de Costa Rica, vol 1. Editorial Universidad Estatal a Distancia, San José (Costa Rica)Google Scholar
  44. Gradstein SR, Hietz P, Lücking R, Lücking A, Sipman HJM, Vester HFM, Wolf JHD, Gardette E (1996) How to sample the epiphytic diversity of tropical rain forests. Ecotropica 2:59–72Google Scholar
  45. Grubb PJ (1971) Interpretation of the “Massenerhebung” effect on tropical mountains. Nature 229:44–45PubMedGoogle Scholar
  46. Hale ME Jr (1974) Morden-Smithsonian expedition to Dominica: the lichens (Thelotremataceae). Smith Contrib Bot 16:1–46Google Scholar
  47. Hale ME Jr (1978) A revision of the lichen family Thelotremataceae in Panama. Smith Contrib Bot 38:1–60Google Scholar
  48. Hale ME Jr (1981) A revision of the lichen family Thelotremataceae in Sri Lanka. Bull Br Mus 8:227–332Google Scholar
  49. Hartshorn GS (1978) Treefalls and tropical forest dynamics. In: Tomlinson PB, Zimmerman MH (eds) Tropical Trees as Living Systems. Cambridge University Press, Cambridge, UK, pp 617–638Google Scholar
  50. Hastenrath S (1968) Certain aspects of the three-dimensional distribution of climate and vegetation belts in the mountains of Central America and southern Mexico. In: Troll C (ed) Colloquim Goegraphicum, Band 9. Geoecology of the Mountainous Regions in the Tropical Americas. Proceedings of the UNESCO Mexico Symposium 1966, pp 122–130Google Scholar
  51. Hawksworth D, Rose F (1970) Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature 227:145–148PubMedGoogle Scholar
  52. Hawksworth DL, Rose F (1976) Lichens as Pollution Monitors. Edward Arnold, LondonGoogle Scholar
  53. Heinselman ML (1973) Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quat Res 3:329–382Google Scholar
  54. Herrera W (1985) Clima de Costa Rica. In: Gómez LD (ed) Vegetación y Clima de Costa Rica, vol 2. Editorial Universidad Estatal a Distancia, San José, Costa RicaGoogle Scholar
  55. Holdridge LR (1967) Life Zone Ecology. Tropical Science Center, San José (Costa Rica)Google Scholar
  56. Holdridge LR, Grenke WC, Hatheway WH, Liang T, Tosi JA Jr (1971) Forest environments in tropical life zones: a pilot study. Oxford, Pergamon PressGoogle Scholar
  57. Holz I, Gradstein SR (2005) Cryptogamic epiphytes in primary and recovering upper montane oak forests of Costa Rica – species richness, community composition and ecology. Plant Ecol 178:89–109Google Scholar
  58. Hörnberg GO, Zackrisson U, Segerström U, Svensson BW, Ohlson M and Bradshaw RHW (1998) Boreal swamp forests biodiversity ‘hotspots’ in an impoverished forest landscape. Bioscience 48:795–802Google Scholar
  59. Insarov GE, Schroeter B (2002) Lichen monitoring and climate change. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with Lichens – Monitoring Lichens, NATO Science Series, IV, vol 7. Kluwer, Dordrecht, pp 183–201Google Scholar
  60. ITTO (2002) Guidelines for the restoration, management and rehabilitation of degraded and secondary tropical forest. International Tropical Timber Organization, YokohamaGoogle Scholar
  61. Jablonski D, Roy K, Valentine JW (2006) Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102–106PubMedGoogle Scholar
  62. Jentsch A, Beierkuhnlein C, White S (2002) Scale, the dynamic stability of forest ecosystems, and the persistence of biodiversity. Silva fenn 36:393–400Google Scholar
  63. Jonsson B-G, Jonsell M (1999) Exploring potential biodiversity indicators in boreal forests. Biodivers Conserv 8:1417–1433Google Scholar
  64. Kalb K (2004) New or otherwise interesting lichens II. Bibl Lichenol 88:301–329Google Scholar
  65. Kappelle M, Geuze T, Leal ME, Cleff AM (1996) Successional age and forest structure in a Costa Rican upper montane Quercus forest. J Trop Ecol 12:681—698Google Scholar
  66. Komposch H, Hafellner J (1999) List of lichenized fungi so far observed in the tropical lowland rain forest plot Surumoni (Venezuela, Estado Amazonas). Fritschiana 19:1–10Google Scholar
  67. Komposch H, Hafellner J (2000) Diversity and vertical distribution of lichens in a Venezuelan tropical lowland rain forest. Selbyana 21:11–24Google Scholar
  68. Komposch H, Hafellner J (2003) Species composition of lichen dominated corticolous communities: a lowland rain forest canopy compared to an adjacent shrubland in Venezuela. Bibl Lichenol 86:351–367Google Scholar
  69. Kirschbaum U, Wirth V (1997) Flechten erkennen, Luftgüte bestimmen. Ulmer, StuttgartGoogle Scholar
  70. Kremen C, Niles JO, Dalton MG, Daily GC, Ehrlich PR, Fay JP, Grewal D, Guillery RRP (2000) Economic incentives for rain forest conservation across scales. Science 288:1828–1832PubMedGoogle Scholar
  71. Lamb D, Erskine PD, Parrotta JA (2005) Restoration of degraded tropical forest landscapes. Science 310:1628–1632PubMedGoogle Scholar
  72. Landres P, Verner BJ, Thomas JW (1988) Ecological uses of vertebrate indicator species: a critique. Conserv Biol 2:316–328Google Scholar
  73. Laurance WF, Nascimento HEM, Laurance SG, Condit R, D’Angelo S, Andrade A (2004) Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. For Ecol Manage 190:131–143Google Scholar
  74. Laurance WF, Delamônica P, Laurance SG, Vasconcelos HL, Lovejoy TE (2000) Rainforest fragmentation kills big trees. Nature 404:836PubMedGoogle Scholar
  75. Lawton RO, Nair US, Pielke RA, Welch RM (2001) Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294:584–587PubMedGoogle Scholar
  76. LeBlanc F, De Sloover J (1970) Relation between industrialization and the distribution and growth of epiphytic lichens and mosses in Montreal. Can J Bot 48:1485–1496Google Scholar
  77. Lewin R (1986) Mass extinctions select different victims. Science 231:219–220PubMedGoogle Scholar
  78. Lücking R (1997) The use of foliicolous lichens as bioindicators in the tropics, with special reference to the microclimate. Abstr Bot 21(1):99–116Google Scholar
  79. Lücking R (1998) Ecology of foliicolous lichens at the ‘Botarrama’ trail (Costa Rica), a neotropical rainforest site. Part II. Patterns of diversity and area cover, and their dependence on microclimate and phorophyte species. Ecotropica 4:1–24Google Scholar
  80. Lücking R (1999) Ecology of foliicolous lichens at the ‘Botarrama’ trail (Costa Rica), a neotropical rainforest. IV. Species associations, their salient features and their dependence on environmental variables. Lichenologist 31:269–289Google Scholar
  81. Lücking R (2001) Lichens on leaves in tropical rainforests: life in. a permanently ephemerous environment. Diss Bot 346:41–77Google Scholar
  82. Lücking R, Sipman HJM, Umaña-Tenorio L (2004). TICOLICHEN—the Costa Rican lichen biodiversity inventory as a model for lichen inventories in the tropics. In: Randlane T, Saag A (eds) The 5th IAL Symposium. Lichens in Focus. Tartu University Press, Tartu, 32 ppGoogle Scholar
  83. Lücking R, Chaves JL, Sipman HJM, Umaña L, Aptroot A (2007) A first assessment of the Ticolichen biodiversity inventory in Costa Rica: The genus Graphis (Ascomycota: Ostropales: Graphidaceae). Fieldiana (in press).Google Scholar
  84. Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15:332–337PubMedGoogle Scholar
  85. Marcelli MP (1992) Ecologia liquênica nos manguezais do sul-sudeste Brasileiro. Bibl Lichenol 47(i–vii):1–288Google Scholar
  86. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253PubMedGoogle Scholar
  87. Martin PH, Sherman RE, Fahey TJ (2004) Forty years of tropical forest recovery from agriculture: structure and floristics of secondary and old-growth riparian forests in the Dominican Republic. Biotropica 36:297–317Google Scholar
  88. McCune B (2000) Lichen communities as indicators of forest health. Bryologist 103:353–356Google Scholar
  89. McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. MjM Software, Gleneden Beach, OregonGoogle Scholar
  90. McCune B, Mefford MJ (1999) PC-ORD. Multivariate Analysis of Ecological Data, version 4.0. MjM Software, Gleneden Beach, Oregon, USAGoogle Scholar
  91. McDade LA, Bawa KS, Hespenheide HA, Hartshorn GS (eds) (1994) La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Press, ChicagoGoogle Scholar
  92. Montfoort D, Ek R (1990) Vertical distribution and ecology of epiphytic bryophytes and lichens in a lowland rainforest in French Guiana. Herbarium, Institute of Systematic Botany, UtrechtGoogle Scholar
  93. Myers N (1991) Trees by the billions: a blueprint for ecology. Int Wildl 21:12–15Google Scholar
  94. Nilsson S-G, Baranowski R (1994) Indikatorer på jätteträdskontinuitet—Svenska förekomster av knäppare som är beroende av grova, levande träd. Entomol Tidskr 115:81–97Google Scholar
  95. Nimis PL (1999) Linee guida per la bioindicazione degli effetti dell’inquinamento tramite la biodiversità dei licheni epifiti. In: Piccini C, Salvati S (eds) Atti Workshop Biomonitoraggio Qualità dell’Aria sul territorio Nazionale, pp 267–277. ANPA, Ser. Atti, 2Google Scholar
  96. Nimis PL, Scheidegger C, Wolseley PA (eds) (2002) Monitoring with Lichens—Monitoring Lichens. NATO Science Series. IV. Earth and Environmental Sciences, 7. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  97. Nordén B, Appelquist T (2001) Conceptual problems of Ecological Continuity and its bioindicators. Biodivers Conserv 10:779–791Google Scholar
  98. Nöske NM (2004) Effekte anthropogener Störung auf die Diversität kryptogamischer Epiphyten (Flechten, Moose) in einem Bergregenwald in Südecuador. Ph.D. Thesis, Mathematisch-Naturwissenschaftliche Fakultät, Georg-August-Universität zu Göttingen.Google Scholar
  99. Pearce D (2001) How valuable are the tropical forests? Demonstrating and capturing economic value as a means of addressing the causes of deforestation. Conseil d’Analyse Économique, Seminaire Economie de L’Environnement et du Developpement Durable, ParisGoogle Scholar
  100. Péres REP (2005) Impacto del Manejo Forestal en los Macrolíquenes Cortícolas de Pinus patula (Schl. & Cham) an la Sierra de Juárez, Oaxaca. PhD Thesis, Universidad Autónoma del Estado de Morelos, Cuernavaca, MéxicoGoogle Scholar
  101. Phillips OL, Hall P, Gentry AH, Sawyer SA, Vázquez R (1994) Dynamics and species richness of tropical rain forests. Proc Natl Acad Sci USA 91: 2805–2809PubMedGoogle Scholar
  102. Prendergast JR, Eversham BC (1997) Species richness covariance in higher taxa: empirical tests of the biodiversity indicator concept. Ecography 20:210–216Google Scholar
  103. Raup DM (1986) Biological extinction in earth history. Science 231:1528–1533PubMedGoogle Scholar
  104. Remmert H (1991) The mosaic-cycle concept of ecosystems—an overview. In: Remmert H (ed) The Mosaic-cycle Concept of Ecosystems. Springer, Berlin, pp 1–21Google Scholar
  105. Rose F (1974) The epiphytes of oak. In: Morris MG, Perring FH (eds) The British oak: its history and natural history. Classey Faringdon, UK, pp 250–273Google Scholar
  106. Rose F (1976) Lichenological indicators of age and ecological continuity in Woodlands. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, London, pp 279–307Google Scholar
  107. Rose F (1992) Temperate forest management: its effects on bryophyte and lichen floras and habitats. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing enviroment. Oxford Scientific Publications, Oxford, pp 211–233Google Scholar
  108. Rose F, Coppins S (2002) Site assessment of epiphytic habitats using lichen indices. In: Nimis PL et al (eds) Monitoring with lichens – Monitoring lichens NATO science series, IV, vol 7. Kluwer, Dordrecht, pp 434–348Google Scholar
  109. Rosenmeier MF, Hodell DA, Brenner M, Curtis JH, Martin JB, Anselmetti FS, Ariztegui D, Guilderson TP (2002) Influence of vegetation change on watershed hydrology: implications for paleoclimatic interpretation of lacustrine δ 18 O records. J Paleolimnol 27:117–131Google Scholar
  110. Sagar R, Raghubanshi AS, Singh JS (2003) Asymptotic models of species-area curve for measuring diversity of dry tropical forest tree species. Curr Sci 84:1555–1560Google Scholar
  111. Sanchez-Azofeifa GA, Harris RC, Skole DL (2001) Deforestation in Costa Rica: A quantitative analysis using remote sensing imagery. Biotropica 33:378–384Google Scholar
  112. Scheiner SM (2003) Six types of species-area curves. Glob Ecol Biogeogr 12:441–447Google Scholar
  113. Scheiner SM (2004) A mélange of curves – further dialogue about species-area relationships. Glob Ecol Biogeogr 13:479–484Google Scholar
  114. Scheiner SM, Cox SB, Willig M, Mittelbach GG, Osenberg C, Kaspari M (2000) Species richness, species-area curves and Simpson’s paradox. Evol Ecol Res 2: 791–802Google Scholar
  115. Selva SB (1994) Lichen diversity and stand continuity in the northern hardwoods and spruce-fir forests of northern New England and western New Brunswick. Bryologist 97:424–429Google Scholar
  116. Selva SB (1996) Using lichens to assess ecological continuity in northeastern forests. In: Byrd M (ed) Eastern old-growth forests – prospects for rediscovery and recovery. Island Press,Washington, DC, pp 35–48Google Scholar
  117. Shukla J, Shukla J, Nobre C, Sellers P (1990) Amazon deforestation and climate change. J Sci 247:1322–1325Google Scholar
  118. Silva Filho AA, Toniolo ER, Gabínio M, Oliveira SFS (1998) Mapeamento da cobertura florestal nativa lenhosa do estado de Pernambuco (Documento de Campo FAO no. 17). PNDU, FAO, IBAMA, Governo de PernambucoGoogle Scholar
  119. Sipman HJM (1996) Corticolous lichens. In: Gradstein SR, Hietz P, Lücking R, Lücking A, Sipman HJM, Vester HFM, Wolf JHD, Gardette E (eds) How to sample the epiphytic diversity of tropical rain forests, pp 66–67. Ecotropica 2: 59–72Google Scholar
  120. Sipman HJM, Harris RC (1989) Lichens. In Lieth H, Werger MJA (eds) Tropical rain forest ecosystems biogeographical and ecological studies (Ecosystems of the World 14B). Elsevier, Amsterdam, pp 303–309Google Scholar
  121. Skole D, Tucker C (1993) Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science 260:1905–1910PubMedGoogle Scholar
  122. Smith AP, Hogan KP, Idol JR (1992) Spatial and temporal patterns of light and canopy structure in lowland tropical moist forest. Biotropica 24:503–511Google Scholar
  123. Staiger B (2002) Die Flechtenfamilie Graphidaceae. Studien in Richtung einer natürlicheren Gliederung. Bibl Lichenol 85:1–526Google Scholar
  124. Sterck FJ (1997) Trees and Light: Tree Development and Morphology in relation to light availability in a tropical rain forest in French Guiana. PhD Thesis, Wageningen Agricultural University, Ponser & Looijen, WageningenGoogle Scholar
  125. Sterck FJ, Clark DB, Clark DA, Bongers F (1999) Light fluctuations, crown traits, and response delays for tree saplings in a Costa Rican lowland rain forest. J Trop Ecol 5:83–95Google Scholar
  126. Still CJ, Foster PN, Schneider SH (1999) Simulating the effect of climate change on tropical montane cloud forests. Nature 398:608–610Google Scholar
  127. Stokstad E (2005) Learning to adapt. Science 309:688–690PubMedGoogle Scholar
  128. Sverdrup-Thygeson A (2001) Can ‘continuity indicator species’ predict species richness or red-listed species of saproxylic beetles? Biodivers Conserv 10:815–832Google Scholar
  129. Terbourgh J (1992) Maintenance of diversity in tropical forests. Biotropica 24:283–292Google Scholar
  130. Turton SM (1992) Understory light environments in a northeast Australian rain forest before and after a tropical cyclone. J Trop Ecol 8:241–252CrossRefGoogle Scholar
  131. Uhl C, Buschbacher R, Serrão EAS (1988) Abandoned pastures in Eastern Amazonia. I. Patterns of plant succession. J Ecol 6:663–681Google Scholar
  132. Whitfield J (2001) Vital signs. Nature 411:989–990PubMedGoogle Scholar
  133. Whitmore TC (1990) An introduction to tropical rainforests. Clarendon Press, OxfordGoogle Scholar
  134. Wilson EO (1984) Biophilia. Harvard University Press, CambridgeGoogle Scholar
  135. Wilson EO (1999) The diversity of life. W. W. Norton & Co., New YorkGoogle Scholar
  136. Wilson EO (2002) The future of life. Knopf, New YorkGoogle Scholar
  137. Wirth M, Hale ME Jr (1963) The lichen family Graphidaceae in Mexico. Contrib US Natl Herb 36:63–119Google Scholar
  138. Wirth M, Hale ME Jr (1978) Morden-Smithsonian expedition to Dominica: the lichens (Graphidaceae). Smith Contrib Bot 40:1–64Google Scholar
  139. Wolseley PA (2002) Using corticolous lichens of tropical forests to assess environmental changes. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with Lichens – Monitoring Lichens, Nato Science Series IV Earth and Environmental Sciences. Kluwer Academic Publishers, Dordrecht, pp 1–2Google Scholar
  140. Wolseley PA, Aguirre-Hudson B (1991) Lichens as indicators of environmental change in the tropical forests of Thailand. Glob Ecol Biogeogr Lett 1:170–175Google Scholar
  141. Wolseley PA, Aguirre-Hudson B (1997a) The ecology and distribution of lichens in tropical deciduous and evergreen forests of northern Thailand. J Biogeogr 24:327–343Google Scholar
  142. Wolseley PA, Aguirre-Hudson B (1997b) Fire in tropical dry forests: corticolous lichens as indicators of recent ecological changes in Thailand. J Biogeogr 24:345–362Google Scholar
  143. Wolseley PA, Moncrieff C, Aguirre-Hudson B (1994) Lichens as indicators of environ-mental stability and change in the tropical forests of Thailand. Glob Ecol Biogeogr Lett 4:116–123Google Scholar
  144. Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14Google Scholar
  145. Wright SJ, Muller-Landau HC (2006) The future of tropical forest species. Biotropica 38:287–301Google Scholar
  146. Wu J, Loucks OL (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70:439–466Google Scholar
  147. Zedda L (2002) The epiphytic lichens on Quercus in Sardinia (Italy) and their value as ecological indicators. Englera 24:1–468Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Eimy Rivas Plata
    • 1
    • 2
  • Robert Lücking
    • 1
  • H. Thorsten Lumbsch
    • 1
  1. 1.Department of BotanyField Museum of Natural HistoryChicagoUSA
  2. 2.Ecology and Evolution Program, Biological Sciences DepartmentUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations