Biodiversity and Conservation

, Volume 17, Issue 2, pp 345–363 | Cite as

Diversity and geographic distribution of ciliates (Protista: Ciliophora)

Original Paper

Abstract

About 4,500 free-living ciliate morphospecies have been described, applying an average synonymy rate of 20%. We estimate that 83–89% of the ciliate diversity is still undescribed, using the following probabilities: detailed habitat studies suggest that the described number of morphospecies must be doubled: 4,500 → 9,000; this figure has to be increased by about 50% due to species with similar interphase morphology but different resting cysts: 9,000 → 13,500; the genetic and molecular data suggest that this value must be doubled or trebled: 13,500 → 27,000 to 40,000 free-living, biological ciliate species. The knowledge on geographic distribution of ciliates heavily depends on flagship species and statistical analyses because reliable faunistic studies are rare and molecular data are still in its infancy. We present a list of 52 ciliate flagship species as a testable hypothesis, i.e., the hypothesis of restricted distribution of certain ciliate species must be refused when a considerable number of them is found in all or most biogeographic regions. Flagship species and statistical analyses consistently show Gondwanan and Laurasian ciliate communities, suggesting that the split of Pangaea deeply influenced ciliate distribution and rare species play a key role in geographic differentiation. However, there is also substantial evidence for continental, regional, and local endemism of free-living ciliates. The molecular studies usually show a high level of genetic diversity underlying ciliate morphospecies, suggesting that morphologic and molecular evolution may be decoupled in many ciliate species. Molecular studies on ciliate biogeography are at variance, possibly because most are still focusing on single molecular markers. In sum, the data indicate that ciliate biogeography is similar to that of plants and animals, but with an increased proportion of cosmopolites, favouring the moderate endemicity model.

Keywords

Actual and estimated diversity Cyst species Flagship species Floodplains Genetic and molecular diversity Gondwana Laurasia Moderate endemicity model Pangaea 

References

  1. Aescht E (2001) Catalogue of the generic names of ciliates (Protozoa, Ciliophora). Denisia 1:1–350Google Scholar
  2. Agatha S, Strüder-Kypke MC, Beran A et al (2005) Pelagostrobilidium neptuni (Montagnes and Taylor, 1994) and Strombidium biarmatum nov. spec. (Ciliophora, Oligotrichea): phylogenetic position inferred from morphology, ontogenesis and gene sequence data. Eur J Protistol 41:65–83CrossRefGoogle Scholar
  3. Barth D, Krenek S, Fokin SI et al (2006) Intraspecific genetic variation in Paramecium revealed by mitochondrial cytochrome c oxidase I sequences. J Eukaryot Microbiol 53:20–25PubMedCrossRefGoogle Scholar
  4. Berger H (1999) Monograph of the Oxytrichidae (Ciliophora, Hypotrichia). Monographiae Biol 78:i–xii, 1–1080Google Scholar
  5. Berger H (2006) Monograph of the Urostyloidea (Ciliophora, Hypotricha). Monographiae Biol 85:i–xv, 1–1303Google Scholar
  6. Berger H, Al-Rasheid KAS, Foissner W (2006) Morphology and cell division of Saudithrix terricola n. gen., n. sp., a large, stichotrich ciliate from Saudi Arabia. J Eukaryot Microbiol 53:260–268PubMedCrossRefGoogle Scholar
  7. Chao A, Li PC, Agatha S et al (2006) A statistical approach to estimate soil ciliate diversity and distribution based on data from five continents. Oikos 114:479–493CrossRefGoogle Scholar
  8. Corliss JO (1979) The ciliated protozoa, 2nd edn. Pergamon Press, OxfordGoogle Scholar
  9. Corliss JO (2000) Biodiversity, classification, and numbers of species of protists. In: Raven PH, Williams T (eds) Nature and human society. The quest for a sustainable world. National Academy Press, Washington, pp 130–155Google Scholar
  10. Dini F, Nyberg D (1993) Sex in ciliates. In: Jones JG (ed) Advances in microbial ecology, vol 13, Plenum Press, New York, pp 85–153Google Scholar
  11. Dragesco J (1999) Revision des Geléiides (Ciliophora, Karyorelictea). Stapfia 66:1–91Google Scholar
  12. Dragesco J, Dragesco-Kernéis A (1986) Ciliés libres de l’Afrique intertropicale. Faune Trop 26:1–559Google Scholar
  13. Dragesco J, Dragesco-Kernéis A (1991) Free-living ciliates from the coastal area of Lake Tanganyika (Africa). Eur J Protistol 26:216–235Google Scholar
  14. Esteban GF, Finlay BJ, Olmo JL et al (2000) Ciliated protozoa from a volcanic crater-lake in Victoria, Australia. J Nat Hist (London) 34:159–189Google Scholar
  15. Finlay BJ, Corliss JO, Esteban G et al (1996) Biodiversity at the microbial level: the number of free-living ciliates in the biosphere. Q Rev Biol 71:221–237CrossRefGoogle Scholar
  16. Finlay BJ, Esteban GF, Fenchel T (2004) Protist diversity is different? Protist 155:15–22PubMedCrossRefGoogle Scholar
  17. Finlay BJ, Esteban GF, Brown S et al (2006) Multiple cosmopolitan ectotypes within a microbial eukaryote morphospecies. Protist 157:377–390PubMedCrossRefGoogle Scholar
  18. Foissner W (1991) Basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa. Eur J Protistol 27:313–330Google Scholar
  19. Foissner W (1993a) Colpodea (Ciliophora). Protozoenfauna 4/1:i–x, 1–798Google Scholar
  20. Foissner W (1993b) Corticocolpoda kaneshiroae n. g., n. sp., a new colpodid ciliate (Protozoa, Ciliophora) from the bark of Ohia trees in Hawaii. J Eukaryot Microbiol 40:764–775CrossRefGoogle Scholar
  21. Foissner W (1994) Morphology and morphogenesis of Circinella arenicola nov. gen., nov. spec., a cephalized hypotrich (Ciliophora, Hypotrichida) from sand dunes in Utah, USA. Eur J Protistol 30:156–170Google Scholar
  22. Foissner W (1997) Global soil ciliate (Protozoa, Ciliophora) diversity: a probability-based approach using large sample collections from Africa, Australia and Antarctica. Biodivers Conserv 6:1627–1638CrossRefGoogle Scholar
  23. Foissner W (1998) An updated compilation of world soil ciliates (Protozoa, Ciliophora), with ecological notes, new records, and descriptions of new species. Eur J Protistol 34:195–235Google Scholar
  24. Foissner W (1999a) Description of two new, mycophagous soil ciliates (Ciliophora, Colpodea): Fungiphrya strobli n. g., n. sp. and Grossglockneria ovata n. sp. J Eukaryot Microbiol 46:34–42CrossRefGoogle Scholar
  25. Foissner W (1999b) Protist diversity: estimates of the near-imponderable. Protist 150:363–368PubMedCrossRefGoogle Scholar
  26. Foissner W (2003) Morphology and ontogenesis of Bromeliophrya brasiliensis gen. n., sp. n., a new ciliate (Protozoa: Ciliophora) from Brazilian tank bromeliads (Bromeliaceae). Acta Protozool 42:55–70Google Scholar
  27. Foissner W (2004a) Some new ciliates (Protozoa, Ciliophora) from an Austrian floodplain soil, including a giant, red “flagship”, Cyrtohymena (Cyrtohymenides) aspoecki nov. subgen., nov. spec. Denisia 13:369–382Google Scholar
  28. Foissner W (2004b) Ubiquity and cosmopolitanism of protists questioned. SILnews 43:6–7Google Scholar
  29. Foissner W (2005) Two new “flagship” ciliates (Protozoa, Ciliophora) from Venezuela: Sleighophrys pustulata and Luporinophrys micelae. Eur J Protistol 41:99–117CrossRefGoogle Scholar
  30. Foissner W (2006) Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozool 45:111–136Google Scholar
  31. Foissner W (2007) Dispersal and biogeography of protists: recent advances. Jpn J Protozool 40:1–16Google Scholar
  32. Foissner W, Berger H (1999) Identification and ontogenesis of the nomen nudum hypotrichs (Protozoa: Ciliophora) Oxytricha nova (= Sterkiella nova sp. n.) and O. trifallax (= S. histriomuscorum). Acta Protozool 38:215–248Google Scholar
  33. Foissner W, Stoeck T (2006) Rigidothrix goiseri nov. gen., nov. spec. (Rigidotrichidae nov. fam.), a new “flagship” ciliate from the Niger floodplain breaks the flexibility-dogma in the classification of stichotrichine spirotrichs (Ciliophora, Spirotrichea). Eur J Protistol 42:249–267PubMedCrossRefGoogle Scholar
  34. Foissner W, Wölfl S (1994) Revision of the genus Stentor Oken (Protozoa, Ciliophora) and description of S. araucanus nov. spec. from South American lakes. J Plankton Res 16:255–289CrossRefGoogle Scholar
  35. Foissner W, Xu K (2006) Monograph of the Spathidiida (Ciliophora, Haptoria) Vol. I: Protospathidiidae, Arcuospathidiidae, Apertospathulidae. Monographiae Biol 81:i–ix, 1–485Google Scholar
  36. Foissner W, Agatha S, Berger H (2002) Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha Region and the Namib Desert. Denisia 5:1–1459Google Scholar
  37. Foissner W, Strüder-Kypke M, van der Staay GWM et al (2003) Endemic ciliates (Protozoa, Ciliophora) from tank bromeliads: a combined morphological, molecular, and ecological study. Eur J Protistol 39:365–372CrossRefGoogle Scholar
  38. Foissner W, Berger H, Xu K et al (2005) A huge, undescribed soil ciliate (Protozoa: Ciliophora) diversity in natural forest stands of Central Europe. Biodivers Conserv 14:617–701CrossRefGoogle Scholar
  39. Gerber CA, Lopez AB, Shook SJ et al (2002) Polymorphism and selection at the SerH immobilization antigen locus in natural populations of Tetrahymena thermophila. Genetics 160:1469–1479PubMedGoogle Scholar
  40. Green J, Holmes AJ, Westoby M et al (2004) Spatial scaling of microbial eukaryote diversity. Nature 432:747–753PubMedCrossRefGoogle Scholar
  41. Hausmann K, Selchow P, Scheckenbach F et al (2006) Cryptic species in a morphospecies complex of heterotrophic flagellates: the case study of Caecitellus spp. Acta Protozool 45:415–431Google Scholar
  42. Hillebrand H, Watermann F, Karez R et al (2001) Differences in species richness patterns between unicellular and multicellular organisms. Oecologia 126:114–124CrossRefGoogle Scholar
  43. Hori M, Tomikawa I, Przyboś E, Fujishima M (2006) Comparison of the evolutionary distances among syngens and sibling species of Paramecium. Mol Phylogent Evol 38:697–704CrossRefGoogle Scholar
  44. de Jonckheere JF, Brown S (2005) Description of a new species with a remarkable cyst structure in the genus Naegleria: Naegleria angularis sp. n. Acta Protozool 44:61–65Google Scholar
  45. Katz LA, McManus GB, Snoeyenbos-West LO et al (2005) Reframing the “everything is everywhere” debate: evidence for high gene flow and diversity in ciliate morphospecies. Aquat Microb Ecol 41:55–65CrossRefGoogle Scholar
  46. Katz LA, Snoeyenbos-West OLO, Doerder FP (2006) Unusual patterns of molecular evolution at the SerH surface antigen locus in Tetrahymena thermophila: implication for estimates of effective population size. Mol Biol Evol 23:608–614PubMedCrossRefGoogle Scholar
  47. Kreutz M, Foissner W (2006) The Sphagnum ponds of Simmelried in Germany: a biodiversity hot-spot for microscopic organisms. Protozool Monogr 3:1–267CrossRefGoogle Scholar
  48. Laval-Peuto M (1981) Construction of the lorica in Ciliata Tintinnina. In vivo study of Favella ehrenbergii: variability of the phenotypes during the cycle, biology, statistics, biometry. Protistologica 17:242–279Google Scholar
  49. Lobban CS, Schefter M, Simpson AGB et al (2002) Maristentor dinoferus n. gen., n. sp., a giant heterotrich ciliate (Spirotrichea: Heterotrichida) with zooxanthellae, from coral reefs on Guam, Mariana Islands. Mar Biol 140:411–423CrossRefGoogle Scholar
  50. Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404PubMedCrossRefGoogle Scholar
  51. Lynn D, Strüder-Kypke MC (2006) Species of Tetrahymena identical by small subunit rRNA gene sequences are discriminated by mitochondrial cytochrome c oxidase I gene sequences. J Eukaryot Microbiol 53:385–387PubMedCrossRefGoogle Scholar
  52. Miao W, Yu Y, Shen Y et al (2004) Intraspecific phylogeography of Carchesium polypinum (Peritrichia, Ciliophora) from China, inferred from 18S-ITS1-5.8S ribosomal DNA. Sci China, C Life Sci 47:11–17CrossRefGoogle Scholar
  53. Nanney DL, Park C, Preparata R et al (1998) Comparison of the sequence differences in a variable 23S rRNA domain among sets of cryptic species of ciliated Protozoa. J Eukaryot Microbiol 45:91–100PubMedCrossRefGoogle Scholar
  54. Obolkina LA (1995) New species of the family Colepidae (Prostomatida, Ciliophora) from Lake Baikal. Zool Zh 74:3–19 (in Russian)Google Scholar
  55. Petz W, Song W, Wilbert N (1995) Taxonomy and ecology of the ciliate fauna (Protozoa, Ciliophora) in the endopagial and pelagial of the Weddell Sea, Antarctica. Stapfia 4:1–223Google Scholar
  56. Popper K (1962) The logic of scientific discovery. Harper and Row, New YorkGoogle Scholar
  57. Raikov IB (1972) Nuclear phenomena during conjugation and autogamy in ciliates. In: Chen T-T (ed) Research in protozoology vol 4. Pergamon Press, New York, pp 146–289Google Scholar
  58. Řezácová M, Neustupa J (2007) Distribution of the genus Mallomonas (Synurophyceae) – ubiquitous dispersal in microorganisms evaluated. Protist 158:29–37PubMedCrossRefGoogle Scholar
  59. Schmidt SL, Ammermann D, Schlegel M et al (2006) Stylonychia lemnae strains from North American sites differ in a single nucleotide within the small subunit rDNA from Eurasian strains. J Eukaryot Microbiol 53:308–309PubMedCrossRefGoogle Scholar
  60. Snoeyenbos-West OLO, Salcedo T, McManus GB et al (2002) Insights into the diversity of choreotrich and oligotrich ciliates (Class: Spirotrichea) based on genealogical analyses of multiple loci. Int J Syt Evol Microbiol 52:1901–1913CrossRefGoogle Scholar
  61. Snoke MS, Berendonk TU, Barth D et al (2006) Large global effective population sizes in Paramecium. Mol Biol Evol 23:2474–2479PubMedCrossRefGoogle Scholar
  62. Song W, Wang M (1999) New name list of marine ciliates in China. In: Song W (ed) Progress in protozoology. Qingdao Ocean University Press, Qingdao, China, pp 65–76Google Scholar
  63. Song W, Wilbert N (2002) Faunistic studies on marine ciliates from the Antarctic benthic area, including descriptions of one epizoic form, 6 new species and 2 new genera (Protozoa: Ciliophora). Acta Protozool 41:23–61Google Scholar
  64. Song W, Zhao Y, Xu K et al (2003) Pathogenic protozoa in mariculture. Science Press, Beijing (in Chinese)Google Scholar
  65. Stoeck T, Bruemmer F, Foissner W (2007) Evidence for local ciliate endemism in an alpine anoxic lake. Microb Ecol (in press)Google Scholar
  66. Strüder-Kypke MC, Wright AG, Fokin SI et al (2000) Phylogenetic relationships of the genus Paramecium inferred from small subunit rRNA gene sequences. Mol Phylogenet Evol 14:122–130PubMedCrossRefGoogle Scholar
  67. Telford RJ, Vandvik V, Birks HJB (2006) Dispersal limitations matter for microbial morphospecies. Science 312:1015PubMedCrossRefGoogle Scholar
  68. Tyler PA (1996) Endemism in freshwater algae with special reference to the Australian region. Hydrobiologia 336:1–9Google Scholar
  69. Weisse T (2004) Pelagic microbes – protozoa and the microbial food web. In: O´Sullivan P, Reynolds CR (eds) The lakes handbook, vol I. Blackwell, Oxford, pp 417–460Google Scholar
  70. Weisse T, Rammer S (2006) Pronounced ecophysiological clonal differences of two common freshwater ciliates, Coleps spetai (Prostomatida) and Rimostrombidium lacustris (Oligotrichida), challenge the morphospecies concept. J Plankton Res 28:55–63CrossRefGoogle Scholar
  71. Xu D, Song W, Lin X et al (2006) On two marine oligotrich ciliates, Spirostrombidium agathae n.sp. and S. schizostomum (Kahl, 1932) n. comb. from China, with a key to the identification of seven well-characterized Spirostrombidium spp. (Ciliophora: Oligotrichida). Acta Protozool 45:433–442Google Scholar
  72. Xu K, Foissner W (2005) Descriptions of Protospathidium serpens (Kahl, 1930) and P. fraterculum n.sp. (Ciliophora, Haptoria), two species based on different resting cyst morphology. J Eukaryot Microbiol 52:298–309PubMedCrossRefGoogle Scholar
  73. Zhang W-J, Yang J, Yu Y-H et al (2006) Population genetic structure of Carchesium polypinum (Ciliophora: Peritrichia) in four Chinese lakes inferred from ISSR fingerprinting: high diversity but low differentiation. J Eukaryot Microbiol 53:358–363PubMedCrossRefGoogle Scholar
  74. Zufall RA, McGrath C, Muse SV et al (2006) Genome architecture drives protein evolution in ciliates. Mol Biol Evol 23:1681–1687PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.FB Organismische BiologieUniversität SalzburgSalzburgAustria
  2. 2.Institute of StatisticsNational Tsing Hua UniversityHsin-ChuTaiwan
  3. 3.Department of Biological Sciences, Smith CollegeClark Science CenterNorthamptonUSA

Personalised recommendations