Biodiversity and Conservation

, Volume 17, Issue 11, pp 2701–2712 | Cite as

Leaf litter fungi in a Central Amazonian forest: the influence of rainfall, soil and topography on the distribution of fruiting bodies

  • Ricardo Braga-NetoEmail author
  • Regina Celi Costa Luizão
  • William Ernest Magnusson
  • Gabriela Zuquim
  • Carolina Volkmer de Castilho
Original Paper


Fungi are important components of tropical ecosystems, especially in the recycling of nutrients. However, there is little information on how fungal diversity is structured at scales suitable to plan their conservation. We tested if the distribution of fruiting bodies of litter fungi was random in the landscape (over 25 km2) in a tropical evergreen forest in Central Amazonia. We used linear regressions to evaluate the influence of rainfall, soil characteristics and topography on morphospecies richness and composition. Fungi were collected twice in thirty 0.25 × 250 m plots. Short-term rainfall was represented by the cumulative rainfall in the three days before each plot was surveyed. Plots were classified in two groups based on cumulative rainfall. Clay content in soil and rainfall influenced morphospecies richness, but responses to edaphic factors depended on rainfall. Wetter periods apparently decreased limiting moisture conditions in higher areas, allowing fungal activity and fruiting body production. Morphospecies composition was influenced by clay content, but influence on fungi was probably indirect as clay content was correlated with altitude, plant community and nitrogen availability. Our results suggest that the species of litter fungi are not randomly distributed in the landscape. Furthermore, they indicate that it is viable to conduct mesoscale evaluations of fungal diversity, if the temporal and spatial variation and their interaction are taken into account.


Beta diversity Biodiversity inventories Community ecology Environmental gradients Fruiting body production Litter decomposition Mesoscale Nutrient cycling Patterns of distribution Tropical fungi 


INPA (Instituto Nacional de Pesquisas da Amazônia)

the Portuguese acronym for National Institute of Amazonian Research

RFAD (Reserva Florestal Adolpho Ducke)

the Portuguese acronym for Adolpho Ducke Forest Reserve


Term coined by Magnusson et al. (2005) applied to their sampling methodology, useful both for rapid access to biodiversity and long-term research

PELD (Pesquisas Ecológicas de Longa Duração)

the Portuguese acronym for Long Term Ecological Research Program

PPBio (Programa de Pesquisas em Biodiversidade)

the Portuguese acronym for Biodiversity Research Program


First collection occasion for all plots, from 29 June to 18 September 2005


Second collection occasion for all plots, from 20 September to 22 January 2006


Principal Coordinates Analysis


Morphospecies richness, given by the total number of morphospecies collected


Morphospecies composition, based on the incidence of morphospecies in each plot

CPCRH (Coordenação de Pesquisas em Clima e Recursos Hídricos)

the Portuguese acronym for Climate and Water Resources Research Coordination

Resumo (in Portuguese)

Fungos são importantes componentes dos ecossistemas tropicais, atuando especialmente na reciclagem de nutrientes. Entretanto, existe pouca informação sobre como a diversidade de fungos está estruturada em escalas adequadas para planejar sua conservação. Nós testamos se a distribuição de corpos de frutificação de fungos de liteira ocorre de forma aleatória na paisagem (em 25 km2) em uma floresta na Amazônia Central. Utilizamos regressões lineares para avaliar a influência da precipitação, do solo e topografia sobre a riqueza e composição de morfoespécies. Os fungos foram amostrados em trinta parcelas de 0,25 × 250 m em duas ocasiões. A precipitação em curto prazo foi representada pela chuva acumulada em três dias antes da parcela ser amostrada. As parcelas foram classificadas em dois grupos baseados na precipitação acumulada. O conteúdo de argila no solo e a precipitação influenciaram a riqueza de morfoespécies, mas as respostas aos fatores edáficos dependeram da precipitação. Períodos mais chuvosos aparentemente diminuíram condições limitantes de umidade nas áreas mais elevadas, permitindo a atividade e produção de corpos de frutificação pelos fungos. A composição de morfoespécies foi influenciada pelo conteúdo de argila, mas provavelmente a influência sobre os fungos foi indireta, dado que o conteúdo de argila esteve correlacionado com altitude, comunidade de plantas e disponibilidade de nitrogênio. Nossos resultados sugerem que as espécies de fungos de liteira não estão distribuídas aleatoriamente na paisagem. Além disso, indicam que conduzir avaliações da diversidade de fungos em mesoescala é viável, desde que a variação temporal e espacial, e sua interação, sejam consideradas.



Ricardo Braga-Neto acknowledges the support of a Brazilian National Research Council (CNPq) graduate scholarship. Brazilian Long Term Ecological Research (PELD) guaranteed field support and equipment acquisition. The European Network for Research in Global Change (ENRICH) provided support during the preparation of this manuscript. Topographic and edaphic data were obtained from PELD and PPBio (Programa de Pesquisas em Biodiversidade). Eleusa Barros, Tânia Pimentel and Jane Mertens contributed to soil data acquisition. Rainfall data were obtained from CPCRH/INPA (Coordenação de Pesquisas em Clima e Recursos Hídricos). We thank Dennis Desjardin, Carla Puccinelli and Débora Drucker for their contributions; and D. Jean Lodge, Roberto Garibay Orijel and two anonymous reviewers for revising earlier versions of the manuscript.


  1. Belbin L (1992) PATN: Pattern Analysis Package. CSIRO Division of Wildlife and Ecology, CanberraGoogle Scholar
  2. Braga-Neto R (2007) Guia de morfoespécies de fungos de liteira da Reserva Ducke. Programa de Pesquisas em Biodiversidade (PPBio/INPA). Available from:
  3. Cantrell SA (2004) A comparison of two sampling strategies to assess discomycete diversity in wet tropical forests. Caribb J Sci 40:8–16Google Scholar
  4. Chauvel A, Lucas Y, Boulet R (1987) On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil. Experientia 43:234–241CrossRefGoogle Scholar
  5. Cornejo FH, Varela A, Wright SJ (1994) Tropical forest litter decomposition under seasonal drought: nutrient release, fungi and bacteria. Oikos 70:183–190CrossRefGoogle Scholar
  6. Costa FRC, Magnusson WE, Luizão RCC (2005) Mesoscale distribution patterns of Amazonian understorey herbs in relation to topography, soil and watersheds. J Ecol 93:863–878CrossRefGoogle Scholar
  7. Fearnside PM (2006) A vazante na Amazônia e o aquecimento global. Revista Ciência Hoje 39:76–78Google Scholar
  8. Ferraz G, Nichols JD, Hines JE, Stouffer PC, Bierregaard Jr. RO, Lovejoy TE (2007) A large-scale deforestation experiment: effects of patch area and isolation on Amazon birds. Science 315:238–241PubMedCrossRefGoogle Scholar
  9. Gotelli NJ, Ellison AM (2004) A primer of ecological Statistics. Sinauer Associates, Inc., MassachusettsGoogle Scholar
  10. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655CrossRefGoogle Scholar
  11. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432CrossRefGoogle Scholar
  12. Hawksworth DL, Colwell RR (1992) Microbial Diversity: biodiversity amongst micro-organisms and its relevance. Biodivers Conserv 1:221–226CrossRefGoogle Scholar
  13. Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathology 87:888–891PubMedCrossRefGoogle Scholar
  14. Hedger J (1985) Tropical agarics: resource relations and fruiting periodicity. In: Moore D, Casselton LA, Wood DA, Frankland JC (eds) Developmental biology of higher fungi. Cambridge University Press, CambridgeGoogle Scholar
  15. Kinupp VF, Magnusson WE (2005) Spatial patterns in the understorey shrub genus Psychotria in Central Amazonia: effects of distance and topography. J Trop Ecol 21:363–374CrossRefGoogle Scholar
  16. Krebs CJ (1998) Ecological methodology. Benjamin Cummings, New YorkGoogle Scholar
  17. Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science BV, AmsterdamGoogle Scholar
  18. Lodge DJ, Cantrell S (1995) Fungal communities in wet tropical forests: variation in time and space. Can J Bot 73: S1391–S1398CrossRefGoogle Scholar
  19. Lodge DJ, Chapela I, Samules G et al. (1995) A survey of patterns of diversity in non-lichenized fungi. Mitteilungen der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft 70:157–173Google Scholar
  20. Lodge DJ, Ammirati JF, O’Dell TE, Mueller GM (2004) Collecting and describing macrofungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: Inventory and monitoring methods. Elsevier Academic Press, San DiegoGoogle Scholar
  21. Luizão FJ (1989) Litter production and mineral element input to the forest floor in a Central Amazonian Forest. GeoJournal 19:407–417CrossRefGoogle Scholar
  22. Luizão RCC, Luizão FJ, Paiva RQ, Monteiro TF, Sousa L, Kruijt B (2004) Variation of carbon and nitrogen cycling processes along a topographic gradient in a Central Amazonian forest. Global Change Biol 10:592–600CrossRefGoogle Scholar
  23. Magnusson WE, Lima AP, Luizão RCC et al. (2005) RAPELD: uma modificação do método de Gentry para inventários de biodiversidade em sítios para pesquisa ecológica de longa duração. Biota Neotropica 5:19–24. Available from:–06032005000300002&lng=en&nrm=iso
  24. Manly BFJ (1997) Randomization, bootstrap and Monte-Carlo methods in biology. Chapman and Hall, LondonGoogle Scholar
  25. Marques-Filho AO, Ribeiro MNG, Santos JM (1981) Estudos climatológicos da Reserva Florestal Ducke, Manaus, AM. IV - Precipitação. Acta Amazonica 4:759–768Google Scholar
  26. McCune B, Grace JB (2002) Analysis of Ecological Communities. MjM Software Design, OregonGoogle Scholar
  27. Mertens J (2004) The characterization of selected physical and chemical soil properties of the surface soil layer in the “Reserva Ducke”, Manaus, Brazil, with emphasis on their spatial distribution. Dissertation, Humboldt-Universität Zu BerlinGoogle Scholar
  28. Mueller GM, Schmit JP, Leacock PR, Buyck B, Cifuentes J, Desjardin DE, Halling RE, Hjorstam K, Iturriaga T, Larsson K-H, Lodge DJ, May TW, Minter D, Rajchenberg M, Redhead SA, Ryvarden L, Trappe JM, Watling R, Wu Q-X (2006) Global diversity and distribution of macrofungi. Biodivers Conserv 16:37–48CrossRefGoogle Scholar
  29. O’Dell TE, Lodge DJ, Mueller GM (2004) Approaches to sampling macrofungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: Inventory and monitoring methods. Elsevier Academic Press, San DiegoGoogle Scholar
  30. Polishook JD, Bills GF, Lodge DJ (1996) Microfungi from decaying leaves of two rain forest trees in Puerto Rico. J Indust Microbiol 17:284–294CrossRefGoogle Scholar
  31. Rayner ADM, Watling R, Frankland JC (1985) Resource relations – an overview. In: Moore D, Casselton LA, Wood DA, Frankland JC (eds). Developmental biology of higher fungi. Cambridge University Press, CambridgeGoogle Scholar
  32. Redhead SA (1989) A biogeographical overview of the Canadian mushroom flora. Can J Bot 67:3003–3062CrossRefGoogle Scholar
  33. Santana M, Lodge DJ, Lebow P (2005) Relationships of host recurrence in fungi to rates of tropical leaf decomposition. Pedobiologia 49:549–564CrossRefGoogle Scholar
  34. Schmit JP, Mueller GM, Leacock PR, Mata JL, Wu Q-X, Huang Y-Q (2005) Assessment of tree species richness as a surrogate for macrofungal species richness. Biol Conserv 121:99–110CrossRefGoogle Scholar
  35. Schmit JP, Mueller GM (2006) An estimate of the lower limit of global fungal diversity. Biodivers Conserv 16:99–111CrossRefGoogle Scholar
  36. Singer R (1976) A Monograph of the Neotropical species of the Marasmieae (excepting the Oudemansiellinae), Basidiomycetes–Tricholomataceae. Flora Neotropica 17:1–347Google Scholar
  37. Singer R (1978) Origins of the deficiency of Amazonian soils––a new approach. Acta Amazonica 8:315–316Google Scholar
  38. Singer R (1986) The Agaricales in modern taxonomy, 4th edn. Koeltz Scientific Books, KoenigsteinGoogle Scholar
  39. Singer R, Araujo IJS (1979). A comparison of litter decomposing and ectomycorrhizal Basidiomycetes in latosol-terra-firme rain forest and white podzol campinarana. Acta Amazonica 9:25–41Google Scholar
  40. Sombroek WG (2000) Amazon land forms and soils in relation to biological diversity. Acta Amazonica 30:81–100Google Scholar
  41. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Oxford Blackwell Publications, OxfordGoogle Scholar
  42. Swift MJ (1982) Basidiomycetes as components of forest ecosystems. In: Frankland JC, Hedger J, Swift MJ (eds). Decomposer basidiomycetes: their biology and ecology. Cambridge University Press, CambridgeGoogle Scholar
  43. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophysical Research Letters 33:L120704CrossRefGoogle Scholar
  44. Vogt KA, Bloomfield J, Ammirati JF, Ammirati SR (1992) Sporocarp production by Basidiomycetes, with emphasis on forest ecosystems. In: Carroll GC, Wicklow DT (eds) The fungal community, 2nd edn. Marcel Dekker Inc, New YorkGoogle Scholar
  45. Wilkinson L (1998). Systat, Version 8.0. SPSS Inc., ChicagoGoogle Scholar
  46. Wood TA, Lawrence D, Clark DA (2006) Determinants of leaf litter nutrient cycling in a tropical rain forest: soil fertility versus topography. Ecosystems 9:1–11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Ricardo Braga-Neto
    • 1
    Email author
  • Regina Celi Costa Luizão
    • 1
  • William Ernest Magnusson
    • 1
  • Gabriela Zuquim
    • 1
  • Carolina Volkmer de Castilho
    • 1
  1. 1.Instituto Nacional de Pesquisas da Amazônia, Coordenação de Pesquisas em EcologiaManausBrazil

Personalised recommendations