Advertisement

Biodiversity and Conservation

, Volume 16, Issue 13, pp 3817–3833 | Cite as

Mapping species density of trees, shrubs and vines in a tropical forest, using field measurements, satellite multiespectral imagery and spatial interpolation

  • J. Luis Hernández-StefanoniEmail author
  • Juan Manuel Dupuy
Original Paper

Abstract

We estimated the number of species in a tropical forest landscape in Quintana Roo, Mexico, based on the relationship between reflectance values of satellite imagery and field measurements of plant species density (mean number of species per plot). Total species density as well as that of tree, shrub and vine species were identified from 141 sampling quadrats (16543 individuals sampled). Spatial prediction of plant diversity was performed using universal kriging. This approach considered the linear relationship between plant species density and reflectance values of Thematic Mapper™, as well as the spatial dependence of the observations. We explored the linear relationships between spectral properties of TM bands and the species density of trees, shrubs and vines, using regression analysis. We employed Akaike Information Criterion (AIC) to select a set of candidate models. Based on Akaike weights, we calculated model-averaged parameters. Linear regression between number of species and reflectance values of TM bands yielded regression residuals. We used variogram analysis to analyze the spatial structure of these residuals. Results show that accounting for spatial autocorrelation in the residual variation improved model R2 from 0.57 to 0.66 for number of all species, from 0.58 to 0.65 for number of tree species, from 0.26 to 0.41 for number of shrub species and from 0.13 to 0.17 for species density of vines. The empirical models we developed can be used to predict landscape-level species density in the Yucatan Peninsula, helping to guide and evaluate management and conservation strategies.

Keywords

Akaike information criterion Plant diversity Remote sensing Universal Kriging Tropical forest 

References

  1. Anderson DR, Burnham KP, Thompson WL (2000) Null hypothesis testing: problems, prevalence, and an alternative. J Wildlife Manage 64(4):912–923CrossRefGoogle Scholar
  2. Anderson DR, Burnham KP (2002) Avoiding pitfalls when using information-theoretic methods. J Wildlife Manage 66(3):912–918CrossRefGoogle Scholar
  3. Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modeling. Ecol Model 157:101–118CrossRefGoogle Scholar
  4. Borrough PA, McDonnell RA (1998) Principles of geographical information systems. Spatial information systems and geostatistics. Oxford University PressGoogle Scholar
  5. Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer-Verlag, New YorkGoogle Scholar
  6. Cabrera CE, Souza SM, Tellez VO (1982) Imagenes de la flora Quintanaroense. Centro de Investigaciones de Quintana Roo, MexicoGoogle Scholar
  7. Campbell JB (1987) Introduction to remote sensing. The Guilford Press, New YorkGoogle Scholar
  8. Carroll SS (1998) Modeling abiotic indicators when obtaining spatial predictions of species richness. Environ Ecol Stat 5:257–276CrossRefGoogle Scholar
  9. Clark DB, Palmer MW, Clark DA (1999) Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology 80(8):2662–2675Google Scholar
  10. Earth Resource Mapping Ltd (1998) ER mapper 6.1. User guide, San Diego CAGoogle Scholar
  11. Fairbanks HK, McGwire KC (2004) Patterns of floristic richness in vegetation communities of California: regional scale analysis with multi-temporal NDVI. Global Ecol Biogeogr 13:221–235CrossRefGoogle Scholar
  12. FAO (2001) Global Forest Resource Assessment 2000–Main Report. FAO Forestry Paper 140. FAO. Rome, ItalyGoogle Scholar
  13. French K (1999) Spatial variability in species composition in birds and insects. J Insect Conserv 3:183–189CrossRefGoogle Scholar
  14. Fuller RM, Groom GB, Mugisha S, Ipulet P, Pomeroy D, Katende A, Bailey R, Ogutu-Ohwayo R (1997) The integration of field survey and remote sensing for biodiversity assessment: a case study in the tropical forest and wetlands of Sango Bay, Uganda. Biol Conserv 86:379–391CrossRefGoogle Scholar
  15. Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227PubMedCrossRefGoogle Scholar
  16. Guariguata MR (1990) Landslide disturbances and forest regeneration in upper Luquillo Mountains of Puerto Rico. J Ecol 78:814–832CrossRefGoogle Scholar
  17. Gould W (2000) Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecol Appl 10:1861–1870CrossRefGoogle Scholar
  18. Hernández-Stefanoni JL, Ponce-Hernandez R (2004) Mapping the spatial distribution of plant diversity indices using multi-spectral satellite image classification and field measurements. Biodivers Conserv 13:2599–2621CrossRefGoogle Scholar
  19. Hernandez-Stefanoni JL (2005) Relationships between landscape patterns and species richness of trees, shrubs and vines in a tropical forest. Plant Ecol 179:53–55CrossRefGoogle Scholar
  20. Hernández-Stefanoni JL, Ponce-Hernandez R (2006) Mapping the spatial variability of plant diversity in a tropical forest: comparison of spatial interpolation methods. Environ Monit Assess 117:307–334PubMedCrossRefGoogle Scholar
  21. Hernández-Stefanoni JL, Bello-Pineda J, Valdes-Valadez G (2006) Comparing the use of indigenous knowledge with classification and ordination techniques for assessing the species composition and structure of vegetation in a tropical forest. Environ Manage 37(5):686–702PubMedCrossRefGoogle Scholar
  22. Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University press, New YorkGoogle Scholar
  23. Isik K, Yaltikik F, Akesen A (1997) The interrelationship of forests, biological diversity and the maintenance of natural resources. Unasylva FAO 48:190–191Google Scholar
  24. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19(2):101–108PubMedCrossRefGoogle Scholar
  25. Jensen JR (2000) Remote sensing of environment: an earth resource perspective. Prentice Hall, New Jersey, 544 ppGoogle Scholar
  26. Kerr JT, Southowood TRE, Chilar J (2001) Remotely sensing habitat diversity predicts butterfly species richness and community similarity in Canada. Proc Nat Acad Sci USA 98:11365–11370PubMedCrossRefGoogle Scholar
  27. Kitanidis PK (2000) Introduction to Geoestatistics. Applications in hydrogeology. Cambrige University PressGoogle Scholar
  28. Moreno CE, Halffter G (2001) Spatial and temporal analysis of a, b, and g diversities of bats in a fragmented landscape. Biodivers Conserv 10:367–382CrossRefGoogle Scholar
  29. Muldavin EH, Neville P, Harpper G (2001) Indices of grassland biodiversity in the Chihuahuan desert ecoregion derived from remote sensing. Conserv Biol 15:844–855CrossRefGoogle Scholar
  30. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 43(24):853–858CrossRefGoogle Scholar
  31. Nagendra H, Gadgil M (1999) Satellite imagery as a tool for monitoring species diversity: an assessment. J Appl Ecol 36:388–397Google Scholar
  32. National Aeronautics and Space Administration (1998) Landsat 7 science data users handbook Greenbelt, Maryland, Goddard Space Flight Center, electronic version http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html
  33. Oindo BO, Skidmore AK (2002) Interannual variability of NDVI and species richness in Kenya. Int J Remote Sens 23:1195–1198CrossRefGoogle Scholar
  34. O’Neill RJ, Krummel JR, Gardner RH, Sugihara G, Jackson B, Deangelis DL, Milne BT, Turner MG, Zygmunt B, Christensen SW, Dale VH, Graham RL (1988) Indices of landscape pattern. Landscape Ecol 1:153–162CrossRefGoogle Scholar
  35. Palmer MW, Clark DB, Clark DA (2000) Is the number of tree species en small tropical forest plots nonramdom? Community Ecol 1(1):95–101CrossRefGoogle Scholar
  36. Pfeffer K, Pebesma EJ, Burrough PA (2003) Mapping alpine Vegetation using vegetation observations and topographic attributes. Landscape Ecol 18:759–776Google Scholar
  37. Pitkanen S (1998) The use of diversity indices to assess the diversity of vegetation in managed boreal forest. Forest Ecol Manage 112:121–137CrossRefGoogle Scholar
  38. Plotkin JB, Potts MD, Yu DW, Bunyavejchewin S, Condit R, Foster R, Hubbell S, LaFrankie J, Manokaran N, Lee HS, Sukumar R, Nowak MA, Ashton PS (2000) Predicting species diversity in tropical forests. Proc Nat Acad Sci 97(20):10850–10854PubMedCrossRefGoogle Scholar
  39. Putz FE (1984) The natural history of lianas on Barro Colorado Island, Panama. Ecology 65:1713:1724CrossRefGoogle Scholar
  40. Robertson GP (2000) GS+: geostatistics for environmental science. Gamma Design Software. Plainwell, MichiganGoogle Scholar
  41. Rocchini D, Chiarucci A, Loiselle SA (2004) Testing the spectral variation hypothesis by uing satellite multispectral images. Acta Oecologica 26:117–120CrossRefGoogle Scholar
  42. Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17:223–230CrossRefGoogle Scholar
  43. Silbaugh JM, Betters DR (1995) Quantitative biodiversity measures applied to forest management. Environ Rev 3:277–285Google Scholar
  44. Tabachnick BG, Fidell LS (1996) Using multivariate statistics. Harper Collins College Publishers, New YorkGoogle Scholar
  45. Thenkabail PS, Enclona EA, Ashton MS, Legg C, De Dieu MJ (2004) Hyperion, IKONOS, ALI and ETM+ sensors in the study of African rainforest. Remote Sens Environ 90:23–43CrossRefGoogle Scholar
  46. Tuomisto H, Ruokolainen K, Aguilar M, Sarmiento A (2003) Floristic patterns along 43 km long in an Amazonian rain forest. J Ecol 91:743–756CrossRefGoogle Scholar
  47. Pitkanen S (1998) The use of diversity indices to assess the diversity of vegetation in managed boreal forest. Forest Ecol Manage 112:121–137CrossRefGoogle Scholar
  48. Turner W, Spector S, Gadirner N, Fladeland M, Sterinling E, Steiniger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18:306–314CrossRefGoogle Scholar
  49. Vieira IMG, De Almeida AS, Davidson EA, Stone TA, Carvalh CJR, Guerrero JB (2003) Classifying successional forest using Landsat spectral properties and ecological characteristics in eastern Amazonia. Remote Sens Environ 87:470–481CrossRefGoogle Scholar
  50. Voltz M, Webster R (1990) A comparison of kriging, cubic splines and classification for predicting soil properties from sample information. J Soil Sci 41:473–490CrossRefGoogle Scholar
  51. Waide RB, Willig MR, Steiner CF Mittelbach G, Gough L, Dodson SI, Juday GP, Parmenter R (1999) The relationship between productivity and species richness. Ann Rev Ecol Sistematics 30:257–300CrossRefGoogle Scholar
  52. Wagner HH, Wildi O, Ewald KC (2000) Additive partitioning of plant species diversity in an agricultural mosaic landscape. Landscape Ecol 15:219–227CrossRefGoogle Scholar
  53. Waring R, Coops NC, Ohmann JL, Sarr DA (2002) Interpreting woody plant richness from seasonal ratios of photosynthesis. Ecology 83(11):2964–2970CrossRefGoogle Scholar
  54. Webster R, Oliver MA (2001) Geostatistics for environmental science. John Wiley and Sons, LTD, Toronto, CanadaGoogle Scholar
  55. Whitmore TC (1997) Tropical forest disturbance, disappearance, and species loss. In: Laurance WF, Bierregaard ROJ (eds) Tropical forest remnants. The University of Chicago Press, Chicago, USA, pp 3–12Google Scholar
  56. Wilcox BA (1995) Tropical forest resources and biodiversity the risk of forest loss and degradation. Unasylva FAO. 46(181)Google Scholar
  57. Witting L, Loeschcke V (1995) The optimization of biodiversity conservation. Biol Conserv 71:205–207CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • J. Luis Hernández-Stefanoni
    • 1
    Email author
  • Juan Manuel Dupuy
    • 1
  1. 1.Centro de Investigación Científica de Yucatán A.C., Unidad de Recursos NaturalesMéridaMéxico

Personalised recommendations