Biodiversity and Conservation

, Volume 16, Issue 6, pp 1867–1884 | Cite as

Distribution, diversity and environmental adaptation of highland papayas (Vasconcellea spp.) in tropical and subtropical America

  • X. Scheldeman
  • L. Willemen
  • G. Coppens d’Eeckenbrugge
  • E. Romeijn-Peeters
  • M. T. Restrepo
  • J. Romero Motoche
  • D. Jiménez
  • M. Lobo
  • C. I. Medina
  • C. Reyes
  • D. Rodríguez
  • J. A. Ocampo
  • P. Van Damme
  • P. Goetgebeur
ORIGINAL PAPER

Abstract

Vasconcellea species, often referred to as highland papayas, consist of a group of fruit species that are closely related to the common papaya (Carica papaya). The genus deserves special attention as a number of species show potential as raw material in the tropical fruit industry, fresh or in processed products, or as genetic resources in papaya breeding programs. Some species show a very restricted distribution and are included in the IUCN Red List. This study on Vasconcellea distribution and diversity compiled collection data from five Vasconcellea projects and retrieved data from 62 herbaria, resulting in a total of 1,553 georeferenced collection sites, in 16 countries, including all 21 currently known Vasconcellea species. Spatial analysis of species richness clearly shows that Ecuador, Colombia and Peru are areas of high Vasconcellea diversity. Combination of species occurrence data with climatic data delimitates the potential distribution of each species and allows the modeling of potential richness at continent level. Based on these modeled richness maps, Ecuador appears to be the country with the highest potential Vasconcellea diversity. Despite differences in sampling densities, its neighboring countries, Peru and Colombia, possess high modeled species richness as well. A combination of observed richness maps and modeled potential richness maps makes it possible to identify important collection gaps. A Principal Component Analysis (PCA) of climate data at the collection sites allows us to define climatic preferences and adaptability of the different Vasconcellea species and to compare them with those of the common papaya.

Keywords

Americas Biodiversity mapping Caricaceae Climatic modeling GIS Plant genetic resources Richness Tropical fruits 

References

  1. Badillo VM (1971) Monografía de la familia Caricaceae. Universidad Central de Venezuela, MaracayGoogle Scholar
  2. Badillo VM (1993) Caricaceae. Segundo esquema. Revista de la Facultad de Agronomía de la Universidad Central de Venezuela, Alcance 43, MaracayGoogle Scholar
  3. Badillo VM (2000) Carica L. vs. Vasconcella St.-Hil. (Caricaceae) con la rehabilitación de este último. Ernstia 10(2):74–79Google Scholar
  4. Badillo VM (2001) Nota correctiva Vasconcellea St. Hill. y no Vasconcella (Caricaceae). Ernstia 11(1):75–76Google Scholar
  5. Badillo VM, Van den Eynden V, Van Damme P (2000) Carica palandesis (Caricaceae), a new species from Ecuador. Novon 10:4–6CrossRefGoogle Scholar
  6. Baeza G, Correa D, Salas C (1990) Proteolytic enzymes in Carica candamarcensis. J Sci Food Agric 51:1–9CrossRefGoogle Scholar
  7. Berger J, Abbo J, Turner NC (2003) Ecogeography of annual wild Cicer species: the poor state of the world collection. Crop Sci 43:1076–1090CrossRefGoogle Scholar
  8. Busby JR (1991) BIOCLIM: a bioclimate analysis and prediction system. Plant Prot Quart 6:8–9Google Scholar
  9. Bystriakova N, Kapos V, Lysenko I, Stapleton CMA (2003) Distribution and conservation status of forest in the Asia-Pacific Region. Biod Conserv 12(9):1833–1841CrossRefGoogle Scholar
  10. CAF (1992) Manual técnico del cultivo de chamburo. Centro Agrícola de Quito, Corporación Andino de Fomento, QuitoGoogle Scholar
  11. Cossio F, Bassi G (1987) Babaco, dopo il boom tiriamo le somme. Terra e Vita (Cagliari) 7:88- 93Google Scholar
  12. Cossio F (1988) Il Babaco. Edizioni Calderini Edagricole, BolognaGoogle Scholar
  13. CTIFL (1992) Nuevas especies frutales. Ediciones Mundi-Prensa, MadridGoogle Scholar
  14. Dhuique Mayer C, Caro Y, Pina M, Ruales J, Dornier M, Graille J (2001). Biocatalytic properties of lipase in crude latex from babaco fruit (Carica pentagona). Biotechnol Lett 23(13):1021–1024CrossRefGoogle Scholar
  15. Drew RA, O’Brien CM, Magdalita PM (1998) Development of Carica interspecific hybrids. Acta Hortic 461:285–291Google Scholar
  16. Duke JA (1983) Carica papaya L. In: Handbook of energy crops. Unpublished. Available via Center for New Crops and Plants Products, Purdue University. Department of Horticulture and Landscape Architecture, West Lafayette. http://www.hort.purdue.edu/newcrop/duke_energy/Carica_papaya.html. Cited 30 Aug 2005
  17. Endt DW (1981) The babaco: a new fruit in New Zealand to reach commercial production. Orchardist New Zeal 54(2):58–59Google Scholar
  18. Evéquoz N (1990) Premiers résultats d’un essai de culture de babaco. Revue Suisse de Viticulture, d’Arboriculture et d’Horticulture 22(2):137–141Google Scholar
  19. Evéquoz N (1994) Culture en serre de babaco (Carica pentagona), Résultats d’un essai de 4 ans (2e partie). Revue Suisse de Viticulture, d’Arboriculture et d’Horticulture 26(5):323–325Google Scholar
  20. FAO (2003) Medium-term prospects for Agricultural Commodities. Projections to the Year 2010. FAO Commodities and Trade Technical Paper 1. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  21. FAOSTAT (2005) Statistical databases of the Food and Agriculture Organization of the United Nations. http://www.apps.fao.org. Cited 30 Aug 2005
  22. Ferrara E, Barone F, Calabrese F, D’Ascanio R, De Michele A, Giorgio V, Martelli S, Monastra F, Nieddu G (1993) Babaco (Carica pentagona Heilb.). L’Informatore Agrario (Verona) XLIX(1):41–46Google Scholar
  23. Funk VA, Zermoglio MF and Nasir N (1999) Testing the use of specimen collection data and GIS in biodiversity exploration and conservation decision making in Guyana. Biod Conserv 8:727–751CrossRefGoogle Scholar
  24. Guarino L, Jarvis A, Hijmans RJ, Maxted N (2002) Geographic Information Systems (GIS) and the conservation and use of plant genetic resources. In: Engels JMM, Ramantha Rao V, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CABI publishing, Wallingford, pp 387–404Google Scholar
  25. Greene SL, Hart TC and Afonin A (1999a) Using geographic information to acquire wild crop germplasm for ex situ collections: I. Map development and field use. Crop Sci 39:836–842CrossRefGoogle Scholar
  26. Greene SL, Hart TC Afonin A (1999b) Using geographic information to acquire wild crop germplasm for ex situ collections: II. Post collection analysis. Crop Sci 39:843–849CrossRefGoogle Scholar
  27. Harman JE (1983) Preliminary studies on the postharvest physiology and storage of babaco fruit (C. × heilbornii Badillo nm. pentagona (Heilborn) Badillo). New Zeal J Agric Res 26:237–243Google Scholar
  28. Heij G (1989) Exotic glasshouse vegetable crops: Dutch experiences. Acta Hortic 242:269–276Google Scholar
  29. Hijmans RJ, Garrett KA, Huamán Z, Zhang DP, Schreuder M, Bonierbale M (2000) Assessing the geographic representativeness of genebank collections: the case of Bolivian wild potatoes. Conserv Biol 14(6):1755–1765CrossRefGoogle Scholar
  30. Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Res Newslett 127:15–19Google Scholar
  31. Hijmans RJ, Guarino L, Bussink C, Mathur P, Cruz M, Barrentes I, Rojas E (2003) DIVA-GIS. A geographic information system for the analysis of species distribution data. Manual, version 4.0. http://www.diva-gis.org. Cited 30 Aug 2005
  32. Hijmans RJ, Spooner DM (2001) Geography of wild potato species. Am J Bot 88:2101–2112CrossRefGoogle Scholar
  33. Holmgren PK, Holmgren NH, Barnett LC (1990) Index herbariorum. Part I: the herbaria of the world, 8th edn. New York Botanical Garden, New YorkGoogle Scholar
  34. IUCN (2001) IUCN Red List categories and criteria: version 3.1. IUCN Species Survival Commission, IUCN, Gland and CambridgeGoogle Scholar
  35. IUCN (2004a) 2004 IUCN Red List of threatened species. http://www.redlist.org. Cited 30 Aug 2005
  36. IUCN (2004b) Guidelines for using the IUCN Red List categories and criteria. Standards and petitions Subcommittee of the IUCN SSC Red List Programme Committee. IUCN, Glandand CambridgeGoogle Scholar
  37. Jarvis A, Ferguson ME, Williams DE, Guarino L, Jones PG, Stalker HT, Valls JFM, Pittman RN, Simpson CE, Bramel P (2003) Biogeography of wild Arachis: assessing conservation status and setting future priorities. Crop Sci 43(3):1100–1108CrossRefGoogle Scholar
  38. Jarvis A, Guarino L, Williams DE, Williams K, Vargas I, Hyman G (2002). Spatial analysis of wild peanut distributions and the implications for plant genetic resources conservation. Plant Genet Res Newslett 131: 29–35Google Scholar
  39. Jones PG, Beebe SE, Tohme J, Galwey NW (1997) The use of geographical information systems in biodiversity exploration and conservation. Biod Conserv 6:947–958CrossRefGoogle Scholar
  40. Kempler C, Kabaluk T (1996) Babaco (Carica pentagona Heilb.): a possible crop for the greenhouse. Hortscience 31(5):785–788Google Scholar
  41. Kress WJ, Heyer P, Acevedo P, Coddington J, Cole D, Erwin TL, Meggers BJ, Pogue M, Thorington RW, Vari RP, Weitzman MJ, Weitzman SH (1998) Amazonian biodiversity: assessing conservation priorities with taxonomic data. Biod Conserv 7:1577–1587CrossRefGoogle Scholar
  42. Magdalita PM, Drew RA, Adkins SW, Godwin ID (1997) Morphological, molecular and cytological analysis of Carica papaya × C. cauliflora interspecific hybrids. Theor Appl Genet 95:224–229CrossRefGoogle Scholar
  43. Manshardt RM, Wenslaff TF (1989a) Zygotic polyembryony in interspecific hybrids of Carica papaya and C. cauliflora. J Am Soc Hortic Sci 114(4):684–689Google Scholar
  44. Manshardt RM, Wenslaff TF (1989b) Interspecific hybridisation of papaya with other Carica species. J Am Soc Hortic Sci 114(4):689–694Google Scholar
  45. Mekako HU, Nakasone HY (1975) Interspecific hybridisation among 6 Carica species. J Am Soc Hortic Sci 100(3):237–242Google Scholar
  46. Merino Merino D (1989) El cultivo del babaco. Ediciones Mundi-Prensa, MadridGoogle Scholar
  47. National Research Council (1989) Lost crops of the Incas: little-known plants of the Andes with promise for worldwide cultivation. National Academy Press, WashingtonGoogle Scholar
  48. Nix HA (1986) A biogeographic analysis of Australian elapid snakes. In: Longmore R (ed) Atlas of Elapid Snakes of Australia, Australian Flora and Fauna Series No. 7, Australian Government Publishing Service, Canberra, Australia, pp 4–15Google Scholar
  49. Padulosi S, Eyzaquirre P, Hodgkin T (1999) Challenges and strategies in promoting conservation and use of neglected and underutilized crop species. In: Janick J (ed), Perspectives on new crops and new uses, ASHS Press, Alexandria, USA, pp 140–145Google Scholar
  50. Reddy S, Davalos LM (2003) Geographical sampling bias and its implications for conservation priorities in Africa. J Biogeogr 30(11):1719–1727CrossRefGoogle Scholar
  51. Rodríguez D, Marín C, Quecan H, Ortiz R (2005) Áreas potenciales para colectas del género Vasconcellea Badillo en Venezuela. Bioagro 17(1):3–10Google Scholar
  52. Scheldeman X (2002) Distribution and potential of cherimoya (Annona cherimola Mill.) and highland papayas (Vasconcellea spp.) in Ecuador. PhD Dissertation, Ghent UniversityGoogle Scholar
  53. Scheldeman X, Van Damme P, Romero Motoche J (2002) Highland papayas in southern Ecuador: need for conservation actions. Acta Hortic 575(1):199–205Google Scholar
  54. Sommer JH, Nowicki C, Rios L, Barthlott W, Ibisch PL (2003) Extrapolating species ranges and biodiversity in data-poor countries: The computerized model BIOM. Revista de la Sociedad Boliviana de Botánica 4(1):171–190Google Scholar
  55. Skov F (2000) Potential plant distribution mapping based on climatic similarity. Taxon 49:503–515CrossRefGoogle Scholar
  56. Van den Eynden V, Cueva E and Cabrera O (1999) Plantas silvestres comestibles del sur del Ecuador—Wild edible plants of southern Ecuador. Ediciones Abya-Yala, QuitoGoogle Scholar
  57. Van den Eynden V, Cueva E, Cabrera O (2003) Wild foods from Ecuador. Econ Bot 57(4):576–603CrossRefGoogle Scholar
  58. Vargas JH, Consiglio T, Jørgensen PM, Croat TB (2004) Modelling distribution patterns in a species-rich plant genus, Anthurium (Araceae), in Ecuador. Divers Distrib 10(3):211–216CrossRefGoogle Scholar
  59. Wiid M (1994) Aanpasbaarheid van babako in subtropiese gebiede. Instituut vir Tropiese en Subtropiese Gewasse Inligtingbulletin 15(12):17–19Google Scholar
  60. Wijeratnam RSW (2000) Identification of problems in processing of underutilized fruits of the tropics and their solutions. Acta Hortic 518:237–240Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • X. Scheldeman
    • 1
  • L. Willemen
    • 1
  • G. Coppens d’Eeckenbrugge
    • 1
    • 8
  • E. Romeijn-Peeters
    • 2
  • M. T. Restrepo
    • 1
    • 8
  • J. Romero Motoche
    • 3
  • D. Jiménez
    • 1
  • M. Lobo
    • 4
  • C. I. Medina
    • 4
  • C. Reyes
    • 5
  • D. Rodríguez
    • 6
  • J. A. Ocampo
    • 1
    • 8
  • P. Van Damme
    • 7
  • P. Goetgebeur
    • 2
  1. 1.International Plant Genetic Resources Institute (IPGRI), Regional Office for the AmericasCaliColombia
  2. 2.Department of BiologyFaculty of Sciences, Ghent UniversityGhentBelgium
  3. 3.Naturaleza & Cultura InternacionalLojaEcuador
  4. 4.CORPOICA, Centro de Investigación “La Selva”AntioquiaColombia
  5. 5.Universidad Nacional de Colombia, Sede MedellínMedellínColombia
  6. 6.Centro Nacional de Conservación de los Recursos Genéticos, Oficina Nacional de Diversidad Biológica, Ministerio del AmbienteMaracayVenezuela
  7. 7.Laboratory of Subtropical and Tropical Agriculture and Ethnobotany, Department Plant protectionFaculty of Agricultural and Applied Biological Sciences, Ghent UniversityGhentBelgium
  8. 8.CIRAD/FLHOR, UPR ‘Gestion des ressources génétiques et dynamiques sociales’MontpellierFrance

Personalised recommendations