Biodiversity and Conservation

, Volume 16, Issue 3, pp 807–826

Floristic diversity of sabal palmetto woodland: an endemic and endangered vegetation type from Mexico



The sabal palmetto woodland is a tropical plant formation dominated by Sabal mexicana, with restricted distribution to southeast Mexico. Sabal palms grow on poor soils but accumulate large quantities of organic substrate in their crowns, harboring a contingent of plants that use it as phorophyte. Although it is a threatened formation, basic information on its biodiversity is scant. We examined the floristic diversity of recruited (diameter at breast height, DBH, ≥1 cm) and understory (DBH ≤ 1 cm) plants, and its variation with anthropogenic disturbance. We also examined the floristic diversity of plants that use the sabal palms as phorophytes, and assessed its variation with human impact. All plants present in transects within a conserved and an adjacent perturbed area were sampled. The list of observed taxa shows that this vegetation has a clear affinity with tropical dry and wet forests of Mexico, with a small representation of taxa from desert ecosystems. The floristic contingent included a total of 81 species in 2000 m2. Richness, composition and diversity were affected by disturbance. Recruited and understory vegetation in the disturbed site were 5- and 1.6-times less diverse than in the conserved site, and species of mature, conserved vegetation were substituted by heliophytes in the disturbed site. In contrast, abundance of palms and diversity and identity of epiphytic/hemiepiphytic plants were not affected by disturbance. We show that even monodominated tropical ecosystems growing on poor soils have a high floristic diversity and that current anthropogenic impact threatens not only species and populations but also entire plant formations.


Conservation status Endemic vegetation Epiphytic/hemiepiphytic flora Floristic diversity Mexico Palmetto woodland Sabal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allard D.J. (1990). Southeastern United States: ecological community classification. Interim Report, Version 1.2. The Natural Conservancy, Southeast Regional office, Chapel Hill, North Carolina, USAGoogle Scholar
  2. Colwell R.K. and Coddington J.A. (1994). Estimating terrestrial biodiversity through extrapolation. Philos. Trans. Roy. Soc. London Series B 345: 101–118CrossRefGoogle Scholar
  3. Galindo-González J., Guevara S. and Sosa V.J. (2000). Bat-bird generated seed rains at isolated trees in pastures in a tropical rain forest. Conserv. Biol. 14: 1693–1703CrossRefGoogle Scholar
  4. García E. 1988. Modificaciones al sistema de clasificación climática de Köppen. México D.F., 217 pp.Google Scholar
  5. Gauch H.G..Jr. 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, New YorkGoogle Scholar
  6. Gentry A.H. (1982). Patterns of neotropical plant species diversity. Evol. Biol. 15: 1–84Google Scholar
  7. Gentry A.H. (1988). Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Missouri Bot. Garden 69: 557–593CrossRefGoogle Scholar
  8. Gómez-Pompa A. (1980). Ecología de la vegetación del Estado de Veracruz. Editorial C.E.C.S.A., Mexico CityGoogle Scholar
  9. Guevara S. and Laborde J. (1993). Monitoring seed dispersal at isolated standing trees in tropical pastures: consequences for local species availability. Vegetatio 108: 319–338 Google Scholar
  10. Holbrook N.M. and Putz N.M. (1996). Water relations of epiphytic and terrestrially-rooted strangler figs in a Venezuelan palm savanna. Oecologia 106: 424–431CrossRefGoogle Scholar
  11. López J.C. (2006). Variación ontogénica en la estrategia de defensas anti-herbívoro en plantas hemiepífitas: un estudio con Ficus obtusifolia en el sur de Veracruz. Instituto de Ecologia A.C, MexicoGoogle Scholar
  12. Manly B.F.J. (1997). Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman & Hall, LondonGoogle Scholar
  13. McPherson K. and Williams K. (1998). Fire resistance of cabbage palms (Sabal palmetto) in the southeastern USA. Forest Ecol. Manage. 109: 97–207Google Scholar
  14. Miranda F. and Hernández X.E. (1963). Los tipos de vegetación de México y su clasificación. Bol. Soc. Bot. Méx., núm. 28: 28–79Google Scholar
  15. Pennington T.D. and Sarukhán J. (1998). Árboles tropicales de México. Texto Científico Universitario, México CityGoogle Scholar
  16. Puig H. (1976). Vegetation de la Huasteca, Mexique. Mission Archeologique en Ethnologique Française au Mexique, México, D.FGoogle Scholar
  17. Putz E.F., Romano B.G. and Holbrook N.M. (1995). Comparative phenology of epiphytic and tree-phase strangler figs in a Venezuelan palm savanna. Biotropica 27: 183–189CrossRefGoogle Scholar
  18. Putz F.E. and Holbrook N.H. (1989). Strangler fig rooting habits and nutrient relations in the llanos of Venezuela. Am. J. Bot. 76: 787–788CrossRefGoogle Scholar
  19. Rzedowski J. (1978). Vegetación de México. Limusa, MexicoGoogle Scholar
  20. Soberón J. and Llorente J. (1993). The use of species accumulation for the prediction of species richness. Conserv. Biol. 7: 480–488CrossRefGoogle Scholar
  21. Terborgh J. (1986). Key stone plant resources in the tropical forest. In: Soule, M. (eds) Conservation Biology: The Science of Scarcity and Diversity, pp 330–344. Sinauer, Sunderland, MAGoogle Scholar
  22. Trejo I. and Dirzo R. (2002). Florsitic diversity of Mexican seasonally dry tropical forests. Biodiv. Conserv. 11: 2063–2084CrossRefGoogle Scholar
  23. Zar J.H. (1999). Biostatistical Analysis. Prentice Hall, New Jersey, 988Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Instituto de Ecología A.C.JalapaMexico
  2. 2.Departamento de. Ecología Evolutiva, Instituto de EcologíaUNAMMexico DFMexico
  3. 3.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations