Biodiversity and Conservation

, Volume 16, Issue 3, pp 727–742 | Cite as

Reproductive indicators in natural populations of Douglas-fir in Mexico

  • M. Mápula-larreta
  • J. López-Upton
  • J. J. Vargas-Hernández
  • A. Hernández-Livera
Article

Abstract

The reproductive capacity in nine Mexican Douglas-fir populations was determined by analyzing seed production traits from 144 trees collected in 2001. Significant variation was found for all traits among populations; they contributed between 21% and 43% of total phenotypic variation found in these traits, indicating broad differences in reproductive capacity for that particular year. Seed efficiency (filled seed/seed potential) varied from 14% to 42% among populations; all populations from Central Mexico had a seed efficiency below 25%. The proportion of developed that were empty seeds varied from 0.40 to 0.81 among populations, whereas seed size varied also from 0.88 to 1.21 g per 100 seeds among them. Average ratio of filled seed weight to cone weight (reproductive efficiency) was 29.6 mg g−1, but it varied three-fold between populations with extreme values. Populations with larger cones had greater seed potential and heavier seed but not necessarily higher reproductive or seed efficiency. Most reproductive indicators were significantly correlated with latitude, with lower values in the marginal populations from Central Mexico, in the southern extreme of the species range. Given these results, the need for conservation of Douglas-fir populations in Central Mexico is discussed.

Keywords

Conservation Inbreeding index Pseudotsuga Reproductive indicators Reproductive success Seed production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen G.S. and Owens J.N. (1972). The Life History of Douglas-fir. Canadian Forest Service, Ottawa, ON, 139 Google Scholar
  2. Beaulieu J. and Simon J.P. (1995). Variation in cone morphology and seed characters in Pinus strobus in Quebec. Can. J. Bot. 73: 262–271 Google Scholar
  3. Bramlett D.L. (1974). Seed potential and seed efficiency. In: Kraus, J. (eds) Seed Yield from Southern Pine Seed Orchards, pp 7. Georgia Forestry Center, Macon, Georgia Google Scholar
  4. Bramlett D.L. 1993. Diagnosing Low Seed and Cone Yields from Controlled Pollinations of Southern Pines. 22nd Southern Forest Tree Improvement Conference. Atlanta, Ga. June 14–17, pp. 35–42.Google Scholar
  5. Bramlett D.L., Belcher E.W. Jr., DeBarr G.L., Hertel J.L., Karrefalt R.P., Lantz C.E., Miller T., Ware K.D. and Yates H.O.III. 1977. Cone Analysis of Southern Pines: A Guide Book. General Technical Report SE-13. USDAForest Service, Asheville, North Carolina, 28 p.Google Scholar
  6. Campbell R.K. (1987). Biogeographical distribution limits of Douglas-fir in Southwest Oregon. Forest Ecol. Manage. 18: 1–34 CrossRefGoogle Scholar
  7. Cibrián-Tovar D., Méndez-Montiel J.T., Campos-Bolaños R., Flores-Lara J. and Yates H.O. (1995). Forest Insects of Mexico. Universidad Autónoma Chapingo, Chapingo, México, 453 Google Scholar
  8. Debreczy Z. and Rácz I. (1995). New species and varieties of conifers from Mexico. Phytologia 78: 217–243 Google Scholar
  9. Domínguez-Alvarez F.A. 1994. Análisis histórico-ecológico de los bosques de Pseudotsuga en México. INIFAP-CIR Golfo Centro. Folleto Técnico No. 23. México, 43 p.Google Scholar
  10. Frankham R. (1998). Inbreeding and extinction: island populations. Conserv. Biol. 12: 665–675 CrossRefGoogle Scholar
  11. Guerra de la Cruz V. 2001. Stand Structure and Dynamics of Isolated Pseudotsuga Forests in Southern North America. Ph.D. thesis, Northern Arizona University, Flagstaff, Arizona, 92 p.Google Scholar
  12. Hemann R.K. and Lavender D.P. (1999). Douglas-fir planted forests. New Forests 17: 53–70 CrossRefGoogle Scholar
  13. Ho R.H. (1980). Pollination mechanism and seed production potential in Douglas-fir. Forest Sci. 26: 522–528Google Scholar
  14. Iverson L.R. and Prasad A.M. (2002). Potential redistribution of tree species habitat under five climate change scenarios in the eastern US. Forest Ecol. Manage. 155: 205–222 CrossRefGoogle Scholar
  15. Littell R.C., Milliken G.A., Stroup W.W. and Wolfinger R.D. (1996). SAS System for Mixed Models. SAS Institute Inc., Cary, North Carolina, 633 Google Scholar
  16. López-Upton J. and Donahue J.K. (1995). Seed production of Pinus greggii Engelm. in natural stands in Mexico. Tree Plant. Notes 46: 1–10 Google Scholar
  17. Lyons L.A. (1956). The seed production capacity and efficiency of red pine cones (Pinus resinosa Ait.). Can. J. Bot. 34: 27–36 CrossRefGoogle Scholar
  18. Mápula-L. M., Bonilla-B. R. and Rodríguez-T. D.A. (1996). Germinación y crecimiento inicial de Pseudotsuga macrolepis Flous, en Chapingo, México. Revista Chapingo, Ciencias Forestales (México) 2: 111–117 Google Scholar
  19. Martínez M. (1963). Las Pinaceas Mexicanas. Universidad Nacional Autónoma de México, México, 27–74 Google Scholar
  20. McAuley L. 1990. Coastal Douglas-fir Cone Analysis Results. British Columbia. Ministry of Forests, Silviculture Branch. Internal Report 8653K.Google Scholar
  21. Melillo J.M. (1999). Warm, warm on the range. Science 283: 183–184 CrossRefGoogle Scholar
  22. Mitton J.B. (1992). The dynamic mating systems of conifers. New Forests 6: 197–216 CrossRefGoogle Scholar
  23. Mosseler A., Major J.E., Simpson J.D., Daigle B., Lange K., Park Y.S., Johnsen K.H. and Rajora O.P. (2000). Indicators of population viability in red sprucePicea rubens. I. Reproductive traits and fecundity. Can. J. Bot. 78: 928–940 CrossRefGoogle Scholar
  24. Narváez-F. R. 2000. Estimación de la cosecha de semilla de Pinus arizonica Engelm., con base en la producción de conos, en la región de Madera, Chih. INIFAP-CIR Norte-Centro. Folleto Técnico No. 2. México, 29 p.Google Scholar
  25. Owens J.N., Colangeli A.M. and Morris S.J. (1991). Factors affecting seed set in Douglas-fir (Pseudotsuga menziesii). Can. J. Bot. 69: 229–238 Google Scholar
  26. Owens J.N. and Simpson S.J. (1982). Further observations on the pollination mechanism and seed production. Can. J. Forest Res. 12: 431–434 CrossRefGoogle Scholar
  27. Owston P.W. and Stein W.I. (1974). Pseudotsuga Carr. Douglas-fir. In: Schopmeyer, C.S. (eds) Seeds of Woody Plants in the United States. Agriculture Handbook 450, pp 674–683. USDA Forest Service, Washington, D.C. Google Scholar
  28. Rajora O.P. and Mosseler A. (2001). Challenges and opportunities for conservation of forest genetic resources. Euphytica 118: 197–212 CrossRefGoogle Scholar
  29. Reyes-H. J.V., Vargas-H. J.J. and López-U. J. (2005). Variación morfológica y anatómica en poblaciones mexicanas de Pseudotsuga (Pinaceae). Acta Botánica Mexicana 70: 47–67 Google Scholar
  30. Saccheri I., Kuussaari M., Kankare M., Vikman P., Fortelius W. and Hanski I. (1998). Inbreeding and extinction in a butterfly metapopulation. Nature 392: 491–494 CrossRefGoogle Scholar
  31. SAS Institute Inc. (1998). SAS/STAT Guide for Personal Computers. Version 8.0. Cary, NC, USA Google Scholar
  32. Schemske D.W. and Lande R. (1985). The evolution of self-fertilization and inbreeding depression in plants. II. Empirical observations. Evolution 39: 41–52 CrossRefGoogle Scholar
  33. Sorensen F.C. (1971). Estimate of self-fertility in coastal Douglas-fir from inbreeding studies. Silvae Genet. 20: 115–120 Google Scholar
  34. Sorensen F.C. 1973. Performance of wind-pollination families and intra- and inter-stand crosses on contrasting forest soils. USDA Forest Service Research Note PNW-207, 7 p.Google Scholar
  35. Sorensen F.C. and Campbell R.K. (1993). Seed weight-seedling size correlation in coastal Douglas-fir: genetic and environmental components. Can. J. Forest Res. 23: 275–285 Google Scholar
  36. Sorensen F.C. and Campbell R.K. (1997). Near neighbor pollination and plant vigor in coastal Douglas-fir. Forest Genet. 4: 149–157 Google Scholar
  37. Sorensen F.C. and Cress D.W. (1994). Effects of sib mating on cone and seeds traits in coastal Douglas-fir. Silvae Genet. 43: 338–345 Google Scholar
  38. Sorensen F.C. and Miles R.S. (1974). Self-pollination effects on Douglas-fir and ponderosa pine seeds and seedlings. Silvae Genet. 23: 135–138Google Scholar
  39. Sorensen F.C. and Miles R.S. (1978). Cone and seed weight relationships in Douglas-fir from western and central Oregon. Ecology 59: 641–644 CrossRefGoogle Scholar
  40. Webber J.E. and Painter R.A. (1996). Douglas-fir Pollen Management Manual. Research Branch, Ministry of Forestry, Victoria, B.C., 91Google Scholar
  41. Woods J.H. and Heaman J.C. (1989). Effect of different inbreeding levels on filled seed production in Douglas-fir. Can. J. Forest Res. 19: 54–59 Google Scholar
  42. Yáñez-Espinoza L. 1991. Análisis de la producción de semilla de Pseudotsuga macrolepis Flous en una población natural de la Sierra de Pachuca, Hidalgo. Bachelor Thesis. División de Ciencias Forestales, Universidad Autónoma Chapingo, México, 116 p.Google Scholar
  43. Yazdani R. and Lindgren D. (1991). The impact of self-pollination on production of sound selfed seeds. In: Fineschi, S., Malvolti, M.E., Cannata, F. and Hattemer, H.H. (eds) Biochemical Markers in the Population Genetics of Forest Trees, pp 143–147. SPB Academic Publishing bv, The Hague, The NetherlandsGoogle Scholar
  44. Young J.M. and Young Ch.G. (1992). Seeds of Woody Plants in North America. Dioscorides Press, Portland, Oregon, 407Google Scholar
  45. Zavala-Ch. F. and Méndez-M. J.T. (1996). Factores que afectan la producción de semilla en Pseudotsuga macrolepis Flous en el estado de Hidalgo, México. Acta Botánica Mexicana 36: 1–13Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • M. Mápula-larreta
    • 1
  • J. López-Upton
    • 1
  • J. J. Vargas-Hernández
    • 1
  • A. Hernández-Livera
    • 2
  1. 1.Programa ForestalColegio de PostgraduadosMontecilloMéxico
  2. 2.Programa de SemillasColegio de PostgraduadosMontecilloMéxico

Personalised recommendations