Advertisement

Biodiversity and Conservation

, Volume 16, Issue 3, pp 707–726 | Cite as

Elevational gradients of diversity for lizards and snakes in the Hengduan Mountains, China

  • Cuizhang Fu
  • Jingxian Wang
  • Zhichao Pu
  • Shenli Zhang
  • Huili Chen
  • Bing Zhao
  • Jiakuan Chen
  • Jihua Wu
Article

Abstract

Comparing elevational gradients across a wide spectrum of climatic zones offers an ideal system for testing hypotheses explaining the altitudinal gradients of biodiversity. We document elevational patterns of lizard and snake species richness, and explore how land area and climatic factors may affect species distributions of lizards and snakes. Our synthesis found 42 lizard species and 94 snake species known from the Hengduan Mountains. The lizards are distributed between 500 and 3500 m, and the snakes are distributed between 500 and 4320 m. The relationship between species richness and elevation for lizards and snakes is unimodal. Land area explains a significant amount of the variation in lizard and snake species richness. The cluster analysis reveals pronounced distinct assemblages for lizards and snakes to better reflect the vertical profiles of climate in the mountains. Climatic variables are strongly associated with lizard and snake richness along the elevational gradient. The data strongly implicate water availability as a key constraint on lizard species richness, and annual potential evapotranspiration is the best predictor of snake species richness along the elevational gradient in the Hengduan Mountains.

Keywords

Climate Elevation Elevational gradient Hengduan Mountains Herpetological fauna Lizard Reptile Snake Species richness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angilletta M.J., Niewiarowski P.H. and Navas C.A. (2002). The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27: 249–268CrossRefGoogle Scholar
  2. Austrheim G. (2002). Plant diversity patterns in semi-natural grasslands along an elevational gradient in southern Norway. Plant Ecol. 161: 193–205CrossRefGoogle Scholar
  3. Bachman S., Baker W.J., Brummitt N., Dransfield J. and Moat J. (2004). Elevational gradients, area and tropical island diversity: an example from the palms of New Guinea. Ecography 27: 299–310CrossRefGoogle Scholar
  4. Bhattarai K.R. and Vetaas O.R (2003). Variation in plant species richness of different life forms along a subtropical elevational gradient in the Hymalyas, east Nepal. Global Ecol. Biogeogr. 12: 327–340CrossRefGoogle Scholar
  5. Bhattarai K.R., Vetaas O.R. and Grytness J.A. (2004). Fern species richness along a central Himalayan elevational gradient, Nepal. J. Biogeogr. 31: 389–340Google Scholar
  6. Boufford D.E. and Dyck P.P. (2000). South-central China. In: Mittermeier, R.A., Myers, N. and Mittermeier, C.G. (eds) Hotspots: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions, pp 338–351. CEMEX, Mexico CityGoogle Scholar
  7. Brown J.H. (2001). Mammals on mountainsides: elevational patterns of diversity. Global Ecol. Biogeogr. 10: 101–109CrossRefGoogle Scholar
  8. Brown J.H. and Lomolino M.V. (1998). Biogeography. Sinauer, SunderlandGoogle Scholar
  9. Brown W.C. and Alcala A.C. (1961). Populations of amphibians and reptiles in the submontane and montane forest of Cuernos Negros, Philippine Islands. Ecology 42: 628–636CrossRefGoogle Scholar
  10. Cadle J.E. and Patton J.L. 1988. Distribution patterns of some amphibians, reptiles, and mammals of the Eastern Andean slope of Southern Peru. In: Heyer W.R. and Vanzolini P.E. (eds), Proceedings of a Workshop on Neotropical Distribution Patterns. Academia Brasileira de Ciências, Rio de Janeiro, pp. 225–244.Google Scholar
  11. Crawley M.J. (1993). GLIM for Ecologists. Oxford, Blackwell Scientific PublicationsGoogle Scholar
  12. Currie D.J. (1991). Energy and large-scale patterns of animal- and plant-species richness. Am. Nat. 137: 27–49CrossRefGoogle Scholar
  13. Currie D.J., Francis A.P. and Kerr J.T. (1998). Some general propositions about the study of spatial patterns of species richness. Ecoscience 6: 392–399Google Scholar
  14. Diniz-Filho J.A.F., Bini L.M. and Hawkins B.A. (2003). Spatial autocorrelation and red herrings in geographical ecology. Global Ecol. Biogeogr. 12: 53–64CrossRefGoogle Scholar
  15. Duellman W.E. (1988). Patterns of species diversity in anuran amphibians in the American tropics. Ann. Misso. Bot. Gard. 75: 79–104CrossRefGoogle Scholar
  16. Dunn G. and Everitt B.S. (1982). An Introduction to Mathematical Taxonomy. Cambridge, New YorkGoogle Scholar
  17. Fauth J.E., Crother B.I. and Slowinski J.B. (1989). Elevational patterns of species richness, evenness, and abundance of the Costa Rican leaf litter herpetofauna. Biotropica 21: 178–185CrossRefGoogle Scholar
  18. Fu C., Wu J., Wang X., Lei G. and Chen J. (2004). Patterns of diversity, altitudinal range and body size among freshwater fishes in the Yangtze River basin, China. Global Ecol. Biogeogr. 13: 543–552CrossRefGoogle Scholar
  19. Grytnes J.A. and Vetaas O.R. (2002). Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am. Nat. 159: 294–304CrossRefPubMedGoogle Scholar
  20. Grytnes J.A. (2003). Species richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography 26: 291–300CrossRefGoogle Scholar
  21. Hastie T.J. and Pregibon D. (1993). Generalized linear models. In: Chambers, J.M. and Hastie, T.J. (eds) Statistical Models in S, pp 195–247. Chapman & Hall, LondonGoogle Scholar
  22. Hawkins B.A., Field R., Cornell H.V., Currie D.J., Gue’gan J.-F., Kaufman D.M., Kerr J.T., Mittelbach G.G., Oberdorff T., O’Brein E.M., Porter E.E. and Turner J.R.G. (2003a). Energy, water, and broadscale geographic patterns of species richness. Ecology 84: 3105–3117Google Scholar
  23. Hawkins B.A. and Porter E.E. (2003). Water-energy balance and the geographic pattern of species richness of western Palearctic butterflies. Ecol. Entomol. 28: 678–686CrossRefGoogle Scholar
  24. Hawkins B.A., Porter E.E. and Diniz-Filho J.A.F. (2003b). Productivity and history as predictors of the latitudinal diversity gradient for terrestrial birds. Ecology 84: 1608–1623Google Scholar
  25. Heaney R.H. (2001). Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Global Ecol. Biogeogr. 10: 15–39CrossRefGoogle Scholar
  26. Heatwole H. (1976). Ecology of Reptiles. University of Queensland Press, St. Lucia, AustraliaGoogle Scholar
  27. Heatwole H. (1982). A review of structuring in herpetofaunal assemblages. In: Scott, N.J. (eds) Herpetological Communities, pp 1–19. Wildlife Research Report 13, U.S. Dept. Interior Fish and Wildlife Service, Washington, DCGoogle Scholar
  28. Heatwole H. and Taylor J. (1987). Ecology of Reptiles. Surrey Beatty & Sons Pty Limited, Chipping Norton, AustraliaGoogle Scholar
  29. Heyer W.R. (1967). A herpetofauna study of an ecological transect through the Cordillera de Tilaran, Costa Rica. Copeia 1967: 259–271CrossRefGoogle Scholar
  30. Hoffman M.T., Mingley G.F. and Cowling R.M. (1994). Plant richness is negatively related to energy availability in semi-arid Southern Africa. Biod. Lett. 2: 35–38CrossRefGoogle Scholar
  31. Huey R.B. and Pianka E.R. (1982). Ecological consequences of foraging mode. Ecology 62: 991–999CrossRefGoogle Scholar
  32. Jaccard P. (1901). Distribution de la flore alpine dans le Bassin des Dranes et dans quelques regions voisines. Bull. Soc. Vaudoise Des Sci. Nat. 37: 241–272Google Scholar
  33. Kattan G.H. and Franco P. (2004). Bird diversity along elevational gradients in the Andes of Colombia: area and mass effects. Global Ecol. Biogeogr. 13: 451–458CrossRefGoogle Scholar
  34. Kerr J.T., Vincent R. and Currie D.J. (1998). Lepidopteran richness patterns in North America. Ecoscience 5: 448–453Google Scholar
  35. Kessler M. (2000). Upslope-directed mass effect in palms along an Andean elevational gradient: a cause for high diversity at mid-elevations?. Biotropica 32: 756–759CrossRefGoogle Scholar
  36. Kessler M. (2001). Patterns of diversity and range size of selected plant groups along an elevational transect in the Bolivian Andes. Biod. Conserv. 10: 1897–1921CrossRefGoogle Scholar
  37. Körner Ch. (2002). Mountain biodiversity, its causes and function: an overview. In: Körner, Ch. and Spehn, E.M. (eds) Mountain Biodiversity: A Global Assessment, pp 3–20. Parthenon Publishing, New YorkGoogle Scholar
  38. Lafon C.W. (2004). High biodiversity: an assessment of mountain biodiversity. Diversity and Distributions 10: 75–76CrossRefGoogle Scholar
  39. Legendre P., Dale M.R.T., Fortin M.-J., Gurevitch J., Hohn M. and Myers D. (2002). The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25: 601–615CrossRefGoogle Scholar
  40. Li C., Liu S., Ran J., Sun Z., Liu Z. and Wang Y. (2003a). Survey on herprtological resources in Labahe nature reserve, Tianquan, Sichuan. Sichuan J. Zool. 22: 31–34Google Scholar
  41. Li S., Song Y.L. and Zeng Z.G. (2003b). Elevational gradients of small mammal diversity on the northern slopes of Mt. Qilian, China. Global Ecol. Biogeogr. 12: 449–460CrossRefGoogle Scholar
  42. Lieth H. (1975). Modeling the primary productivity of the world. In: Lieth, H. and Whittaker, R.H. (eds) Primary Productivity of the Biosphere, pp 237–263. Springer-Verlag, New YorkGoogle Scholar
  43. Liu N. (2000). Physical Geography. Science Press, Beijing, ChinaGoogle Scholar
  44. Lobo J.M. and Halffter G. (2000). Biogeography and ecological factors affecting the altitudinal variation of mountainous communities of coprophagous beetles (Coleoptera: Scarabaeoidea): a comparative study. Ann. Entomol. Soc. Am. 93: 115–126CrossRefGoogle Scholar
  45. Lomolino M.V. (2001). Elevational gradients of species diversity: historical and prospective views. Global Ecol. Biogeogr. 10: 3–13CrossRefGoogle Scholar
  46. Luddecke H. (1997). Colonization of the eastern Andes of Colombia by anurans: evidence from natural history data of Hyla labialis. Salamandra 33: 111–132Google Scholar
  47. Lynch J.D. (1987). Origins of the high Andean herpetological fauna. In: Vuilleumier, F. and Monasterio, M. (eds) High Altitude Tropical Biogeography, pp 478–499. Oxford University Press, OxfordGoogle Scholar
  48. McCain C.M. (2004). The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. J. Biogeogr. 31: 19–31Google Scholar
  49. McCullagh P. and Nelder J.A. (1989). Generalized Linear Models. Chapman & Hall, LondonGoogle Scholar
  50. Md. Nor S. (2001). Elevational diversity patterns of small mammals on Mount KinabaluSabah, Malaysia. Global Ecol. Biogeogr. 10: 41–62CrossRefGoogle Scholar
  51. Meyer E. and Thaler K. (1995). Animal diversity at high altitudes in the Austrian Central Alps. Ecol. Stud. 113: 97–108Google Scholar
  52. Myers N., Mittermeier R.A., Mittermeier C.G., Kent J. and Fonseca G.A.B. (2000). Biodiversity hotspots for conservation priorities. Nature 403: 853–858PubMedCrossRefGoogle Scholar
  53. Nathan R. and Werner Y.L. (1999). Reptiles and breeding birds on Mt. Hermon: patterns of altitudinal distribution and species richness. Israel J. Zool. 45: 1–33Google Scholar
  54. Navas C.A. (2003). Herpetological diversity along Andean elevational gradients: links with physiological ecology and evolutionary physiology. Comp. Biochem. Physiol. Part A 133: 469–485CrossRefGoogle Scholar
  55. O’Brien E.M. (1993). Climate gradients in woody plant species richness: towards an explanation based on an analysis of Southern Africa’s woody Flora. J. Biogeogr. 20: 181–198CrossRefGoogle Scholar
  56. Odland A. and Birks H.J.B. (1999). The altitudinal gradient of vascular plant species richness in Aurland, western Norway. Ecography 22: 548–566CrossRefGoogle Scholar
  57. Owen J.G. (1989). Patterns of herpetofaunal species richness: relation to temperature, precipitation and variance in elevation. J. Biogeogr. 16: 141–150CrossRefGoogle Scholar
  58. Pan X., Zhou W., Zhou Y., Wu F. and Zhang Q. (2002). Amphibian and reptile in Zhongdian area of northwest Yunnan. Sichuan J. Zool. 21: 88–91Google Scholar
  59. Patterson B.D., Stotz D.F., Solari S., Fitzpatrick J.W. and Pacheco V. (1998). Contrasting patterns of elevational zonation for birds and mammals in the Andes of south-eastern Peru. J. Biogeogr. 25: 593–607CrossRefGoogle Scholar
  60. Peafur J.E. and Duellman W.E. (1980). Community structure in high Andean herpetofaunas. Trans. Kansas Acad. Sci. 83: 45–65CrossRefGoogle Scholar
  61. Pianka E.R. (1967). On lizard species diversity: North American flatland deserts. Ecology 48: 333–351CrossRefGoogle Scholar
  62. Pianka E.R. (1971). Lizard species diversity in the Kalahari desert. Ecology 52: 1012–1030CrossRefGoogle Scholar
  63. Pianka E.R. (1986). Ecology and Natural History of Desert Lizards. Princeton University Press, Princeton, New JerseyGoogle Scholar
  64. Pianka E.R. and Schall J.J. (1981). Species densities of Australian vertebrates. In: Keast, A. (eds) Ecological Biogeography of Australia, pp 1676–1694. Dr. W. Junk Publishers, The Hague, The NetherlandsGoogle Scholar
  65. Pyrcz T.W. and Wojtusiak J. (2002). The vertical distribution of pronophiline butterflies (Nymphalidae, Satyrinae) along an elevational transect in Monte Zerpa (Cordillera de Mérida, Venezuela) with remarks on their diversity and parapatric distribution. Global Ecol. Biogeogr. 11: 211–221CrossRefGoogle Scholar
  66. Rahbek C. (1995). The elevational gradient of species richness: a uniform pattern?. Ecography 18: 200–205CrossRefGoogle Scholar
  67. Rahbek C. (1997). The relationship between area, elevation and regional species richness in Neotropical birds. Am. Nat. 149: 875–902CrossRefPubMedGoogle Scholar
  68. Rickart E.A. (2001). Elevational diversity gradients, biogeography and the structure of montane mammal communities in the intermountain region of North America. Global Ecol. Biogeogr. 10: 77–100CrossRefGoogle Scholar
  69. Rohde K. (1992). Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65: 514–527CrossRefGoogle Scholar
  70. Rosenzweig M.L. (1968). Net primary productivity of terrestrial environments: predictions from climatological data. Am. Nat. 102: 67–84CrossRefGoogle Scholar
  71. Rosenzweig M.L. (1992). Species diversity gradients: we know more and less than we thought. J. Mammal. 73: 715–730CrossRefGoogle Scholar
  72. Rosenzweig M.L. (1995). Species Diversity in Space and Time. Cambridge University Press, CambridgeGoogle Scholar
  73. Rosenzweig M.L. and Abramsky Z. (1993). How are diversity and productivity related?. In: Ricklefs, R.E. and Schluter, D. (eds) Species Diversity in Ecological Communities: Historical and Geographical Perspectives, pp 52–65. University of Chicago Press, ChicagoGoogle Scholar
  74. Samson D.A., Rickart E.A. and Gonzales P.C. (1997). Ant diversity and abundance along an elevational gradient in the Philippines. Biotropica 29: 349–363CrossRefGoogle Scholar
  75. Sánchez-Cordero V. (2001). Elevational gradients of diversity for rodents and bats in Oaxaca, Mexico. Global Ecol. Biogeogr. 10: 63–76CrossRefGoogle Scholar
  76. Sanders N.J. (2002). Elevational gradients in ant species richness: area, geometry and Rapoport’s rule. Ecography 25: 25–32CrossRefGoogle Scholar
  77. Sanders N.J., Moss J. and Wagner D. (2003). Patterns of ant species richness along elevational gradients in an arid ecosystem. Global Ecol. Biogeogr. 12: 93–102CrossRefGoogle Scholar
  78. Schall J.J. and Pianka E.R. (1978). Geographical trends in numbers of species. Science 201: 679–686CrossRefPubMedGoogle Scholar
  79. Scheibe J.S. (1987). Climate, competition and the structure of temperate zone lizard communities. Ecology 68: 1424–1436CrossRefGoogle Scholar
  80. Scott N.J. (1976). The abundance and diversity of the herpetofaunas of tropical forest litter. Biotropica 8: 41–58CrossRefGoogle Scholar
  81. Simbotwe M.P. (1985). Distribution patterns in a wetland herpetofaunal assemblage of the kafue flats. Zambia. Black lechwe 7: 12–16Google Scholar
  82. Tang C.Q. and Ohsawa M. (1999). altitudinal distribution of evergreen broad-leaved trees and their leaf-size pattern on a humid subtropical mountain, Mt. EmeiSichuan, China. Plant Ecol. 145: 221–233CrossRefGoogle Scholar
  83. Terent’ev P.W. (1963). Attempt at application of analysis of variation to the qualitative richness of the fauna of terrestrial vertebrates of the U.S. S. R. Vestnik Leningradskovo Universiteta 21: 19–26Google Scholar
  84. Vetaas O.R. and Grytnes J.A. (2002). Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecol. Biogeogr. 11: 291–301CrossRefGoogle Scholar
  85. Humboldt A. (1808). Ansichten der Natur mit wissenschaftlichen erlauterungen. J. G. Cotta, Tübingen, GermanyGoogle Scholar
  86. Whitford W.G. and Creusere F.M. (1977). Seasonal and yearly fluctuations in Chihuahuan desert lizard communities. Herpetologica 33: 54–65Google Scholar
  87. Whittaker R.J. and Field R. (2000). Tree species richness modeling: an approach of global applicability?. Oikos 89: 399–402CrossRefGoogle Scholar
  88. Whittaker R.J., Willis K.J. and Field R. (2001). Scale and species richness: towards a general, hierarchical theory of species diversity. J. Biogeogr. 28: 453–470CrossRefGoogle Scholar
  89. Willig M.R., Kaufman D.M. and Stevens R.D. (2003). Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. An. Rev. Ecol., Evol. Syst. 34: 273–309CrossRefGoogle Scholar
  90. Willis K.J. and Whittaker R.J. (2002). Species diversity: scale matters. Science 295: 1245–1248PubMedCrossRefGoogle Scholar
  91. Wright D.H. (1983). Species-energy theory: an extension of species-area theory. Oikos 41: 496–506CrossRefGoogle Scholar
  92. Yang Z., Xie Y. and Yang S. (1994). The application of evaporation ratio (E / E0) to the regionalization and classification of arid and humid climate of Yunnan Province. J. Yunnan Univ. (supplement) 16: 91–98Google Scholar
  93. Zhang R., Zhen D., Yang Q. and Liu Y. (1997). Physical Geography of Hengduan Mountains. Science Press, Beijing, ChinaGoogle Scholar
  94. Zhang Y. (1989). Climatic division of the Hengduan mountains region. Mount. Res. 7: 21–28Google Scholar
  95. Zhao E., Chang H., Zhao H. and Adler K. (2000). Revised checklist of Chinese Amphibia & Reptilia. Sichuan J. Zool. 19: 196–207Google Scholar
  96. Zhao E. and Huang Q. (2003). Coloured Atlas of Sichuan reptiles. China Forestry Publishing House, Beijing, ChinaGoogle Scholar
  97. Zhao E. and Yang D. (1997). Herpetological Fauna of the Hengduan Mountains. Science Press, Beijing, ChinaGoogle Scholar
  98. Zhen D. (1989). A comparative study on physical-geographic conditions between the Himalayas and Hengduan Mountainous Regions. Mount. Res. 6: 137–146Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Cuizhang Fu
    • 1
  • Jingxian Wang
    • 1
  • Zhichao Pu
    • 1
  • Shenli Zhang
    • 1
  • Huili Chen
    • 1
  • Bing Zhao
    • 1
  • Jiakuan Chen
    • 1
  • Jihua Wu
    • 1
  1. 1. Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Biodiversity ScienceFudan UniversityShanghaiChina

Personalised recommendations