Biodiversity & Conservation

, Volume 15, Issue 12, pp 3949–3969 | Cite as

Recommendations for Assessing the Effectiveness of Surrogate Species Approaches

  • Jorie M. Favreau
  • C. Ashton Drew
  • George R. Hess
  • Matthew J. Rubino
  • Frank H. Koch
  • Katherine A. Eschelbach


Surrogate species approaches, including flagship, focal, keystone, indicator, and umbrella, are considered an effective means of conservation planning. For conservation biologists to apply surrogates with confidence, they must have some idea of the effectiveness of surrogates for the circumstances in which they will be applied. We reviewed tests of the effectiveness of surrogate species planning to see if research supports the development of generalized rules for (1) determining when and where surrogate species are an effective conservation tool and (2) how surrogate species should be selected such that the resulting conservation plan will effectively protect biodiversity or achieve other conservation goals. The context and methods of published studies were so diverse that we could not draw general conclusions about the spatial or temporal scales, or ecosystems or taxonomic groups for which surrogate species approaches will succeed. The science of surrogate species can progress by (1) establishing methods to compare diverse measures of effectiveness; (2) taking advantage of data-rich regions to examine the potential effectiveness of surrogate approaches; (3) incorporating spatial scale as an explanatory variable; (4) evaluating surrogate species approaches at broader temporal scales; (5) seeking patterns that will lead to hypothesis driven research; and (6) monitoring surrogate species and their target species.


Effectiveness Flagship species Focal species Indicator species Keystone species Surrogate species Umbrella species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andelman S.J. and Fagan W.F. (2000). Umbrellas and flagships: efficient conservation surrogates or expensive mistakes?. Proc. Natl. Acad. Sci. USA 97: 5954–5959CrossRefPubMedGoogle Scholar
  2. Arnqvist G. and Wooster D. (1995). Meta-analysis: synthesizing research findings in ecology and evolution. Trends Ecol. Evol. 10: 236–240CrossRefGoogle Scholar
  3. Baldi A. (2003). Using higher taxa as surrogates of species richness: a study based on 3700 Coleoptera, Dipteraand Acari species in Central-Hungarian reserves. Basic Appl. Ecol. 4: 589–593CrossRefGoogle Scholar
  4. Belovsky G.E., Botkin D.B., Crowl T.A., Cummins K.W., Franklin J.F., Hunter M.L., Joern A., Lindenmayer D.B., MacMahon J.A., Margules C.R. and Scott J.M. (2004). Ten suggestions to strengthen the science of ecology. Bioscience 54: 345–351CrossRefGoogle Scholar
  5. Berger J. (1997). Population constraints associated with the use of black rhino as an umbrella species for desert herbivores. Conserv. Biol. 11: 69–78CrossRefGoogle Scholar
  6. Bond W. (2001). Keystone species – hunting the snark?. Science 292: 63–64CrossRefPubMedGoogle Scholar
  7. Bonn A., Rodrigues A.S.L. and Gaston K.J. (2002). Threatened and endemic species: are they good indicators of patterns of biodiversity on a national scale?. Ecol. Lett. 5: 733–741CrossRefGoogle Scholar
  8. Brooker L. (2002). The application of focal species knowledge to landscape design in agricultural lands using the ecological neighbourhood as a template. Landscape Urban Plan. 60: 185–210CrossRefGoogle Scholar
  9. Brooks T.M., Rodrigues A.S.L. and Fonseca G.A.B. (2004). Protected areas and species. Conserv. Biol. 18: 616–618CrossRefGoogle Scholar
  10. Bushman B.J. (1994). Vote-counting procedures in meta-analysis. In: Cooper, H. and Hedges, L.V. (eds) The Handbook of Research Synthesis, pp 193–214. Russell Sage Foundation, NYGoogle Scholar
  11. Cardoso P., Silva I., Serrano A.R.M. and Oliveira N.G. (2004). Higher taxa surrogates of spider (Araneae) diversity and their efficiency in conservation. Biol. Conserv. 117: 453–459CrossRefGoogle Scholar
  12. Caro T., Engilis A., Fitzherbert E. and Gardner T. (2004). Preliminary assessment of the flagship species concept at a small scale. Anim. Conserv. 7: 63–70CrossRefGoogle Scholar
  13. Caro T.M. (2001). Species richness and abundance of small mammals inside and outside an African national park. Biol. Conserv. 98: 251–257CrossRefGoogle Scholar
  14. Caro T.M. (2003). Umbrella species: critique and lessons from East Africa. Anim. Conserv. 86: 171–181CrossRefGoogle Scholar
  15. Caro T.M. and O’Doherty G. (1999). On the use of surrogate species in conservation biology. Conserv. Biol. 13: 805–814CrossRefGoogle Scholar
  16. Carroll C., Noss R.E., Paquet P.C. and Schumaker N.H. (2003). Use of population viability analysis and reserve selection algorithms in regional conservation plans. Ecol. Appl. 13: 1773–1789Google Scholar
  17. Chase M.K., Kristan W.B., Lynam A.J., Price M.V. and Rotenberry J.T. (2000). Single species as indicators of species richness and composition in California coastal sage scrub birds and small mammals. Conserv. Biol. 14: 474–487CrossRefGoogle Scholar
  18. Coulson T., Mace G.M., Hudson E. and Possingham H. (2001). The use and abuse of population viability analysis. Trends Ecol. Evol. 16: 219–221CrossRefPubMedGoogle Scholar
  19. Dietz J.M., Dietz L.A. and Nagagata E.Y. (1994). The effective use of flagship species for conservation of biodiversity: the example of lion tamarins in Brazil. In: Olney, P.J.S., Mace, G.M., and Feistner, A.T.C. (eds) Creative Conservation: Interactive Management of Wild and Captive Animals, pp 32–49. Chapman and Hall, LondonGoogle Scholar
  20. Fernandez-Duque E. and Valeggia C. (1994). Meta-analysis: a valuable tool in conservation research. Conserv. Biol. 8: 555–561CrossRefGoogle Scholar
  21. Fjeldsa J. (2000). The relevance of systematics in choosing priority areas for global conservation. Environ. Conserv. 27: 67–75CrossRefGoogle Scholar
  22. Flather C.H., Wilson K.R., Dean D.J. and McComb W.C. (1997). Identifying gaps in conservation networks: of indicators and uncertainty in geographic-based analyses. Ecol. Appl. 7: 531–542Google Scholar
  23. Fleishman E., Betrus C.J. and Blair R.B. (2003). Effects of spatial scale and taxonomic group on partitioning of butterfly and bird diversity in the Great Basin, USA. Landscape Ecol. 18: 675–685CrossRefGoogle Scholar
  24. Fleishman E., Betrus C.J., Blair R.B., MacNally R. and Murphy D.D. (2002). Nestedness analysis and conservation planning: the importance of place, environment, and life history across taxonomic groups. Oecologia 133: 78–89CrossRefGoogle Scholar
  25. Fleishman E., Blair R.B. and Murphy D.D. (2001). Empirical validation of a method for umbrella species selection. Ecol. Appl. 11: 1489–1501Google Scholar
  26. Fleishman E. and Mac Nally R. (2002). Topographic determinants of faunal nestedness in Great Basin butterfly assemblages: Applications to conservation planning. Conserv. Biol. 16: 422–429CrossRefGoogle Scholar
  27. Fleishman E., Murphy D.D. and Brussard P.E. (2000). A new method for selection of umbrella species for conservation planning. Ecol. Appl. 10: 569–579Google Scholar
  28. Garson J., Aggarwal A. and Sarkar S. (2002). Birds as surrogates for biodiversity: an analysis of a data set from southern Quebec. J. Biosci. 27: 347–360PubMedGoogle Scholar
  29. Gates S. (2002). Review of methodology of quantitative reviews using meta-analysis in ecology. J. Anim. Ecol. 71: 547–557CrossRefGoogle Scholar
  30. Hess G.R., Koch F., Rubino M., Eschalbach K., Drew A. and Favreau J. 2004. Comparing potential effectiveness of conservation planning approaches in central North Carolina USA. Biological Conservation (in press).Google Scholar
  31. Hughes J.B., Daily G.C. and Ehrlich P.R. (2000). Conservation of insect diversity: a habitat approach. Conserv. Biol. 14: 1788–1797CrossRefGoogle Scholar
  32. Hurlbert S.H. (1997). Functional importance vs keystoneness: reformulating some questions in theoretical biocenology. Aust. J. Ecol. 22: 369–382CrossRefGoogle Scholar
  33. ISI 2004. ISI Web of Science. Version 1.2. Accessed June 2004, Scholar
  34. Jansson G. (1998). Guild indicator species on a landscape scale – an example with four avian habitat specialists. Ornis Fennica 75: 119–127Google Scholar
  35. Kati V., Devillers P., Dufrene M., Legakis A., Vokou D. and Lebrun P. (2004). Testing the value of six taxonomic groups as biodiversity indicators at a local scale. Conserv. Biol. 18: 667–675CrossRefGoogle Scholar
  36. Kerr J.T., Sugar A. and Packer L. (2000). Indicator taxarapid biodiversity assessmentand nestedness in an endangered ecosystem. Conserv. Biol. 14: 1726–1734CrossRefGoogle Scholar
  37. Kremen C. (1992). Assessing the indicator properties of species assemblages for natural areas monitoring. Ecol. Appl. 2: 203–217Google Scholar
  38. Lambeck R.J. (1997). Focal species: a multi-species umbrella for nature conservation. Conserv. Biol. 11: 849–856CrossRefGoogle Scholar
  39. Lambeck R.J. (2002). Focal species and restoration ecology: response to Lindenmayer et al. Conserv. Biol. 16: 549–551CrossRefGoogle Scholar
  40. Landres P.B., Verner J. and Thomas J.W. (1988). Ecological uses of vertebrate indicator species – a critique. Conserv. Biol. 2: 316–328CrossRefGoogle Scholar
  41. Launer A.E. and Murphy D.D. (1994). Umbrella species and the conservation of habitat fragments: a case of a threatened butterfly and a vanishing grassland ecosystem. Biol. Conserv. 69: 145–153CrossRefGoogle Scholar
  42. Lawler J.J., White D., Sifneos J.C. and Master L.L. (2003). Rare species and the use of indicator groups for conservation planning. Conserv. Biol. 17: 875–882CrossRefGoogle Scholar
  43. Leader-Williams N. and Dublin H.T. (2000). Charismatic megafauna as ‘flagship species’. In: Entwistle, A. and Dunstone, N. (eds) Priorities for the Conservation of Mammalian Diversity: Has the Panda had its day?, pp 53–81. Cambridge University Press, Cambridge, UKGoogle Scholar
  44. Lindenmayer D.B., Cunningham R.B., Donnelly C.F. and Lesslie R. (2002a). On the use of landscape surrogates as ecological indicators in fragmented forests. Forest Ecol. Manage. 159: 203–216CrossRefGoogle Scholar
  45. Lindenmayer D.B. and Lacy R.C. (2002). Small mammals, habitat patches and PVA models: a field test of model predictive ability. Biol. Conserv. 103: 247–265CrossRefGoogle Scholar
  46. Lindenmayer D.B., Manning A.D., Smith P.L., Possingham H.P., Fischer J., Oliver I. and McCarthy M.A. (2002b). The focal-species approach and landscape restoration: a critique. Conserv. Biol. 16: 338–345CrossRefGoogle Scholar
  47. Linnell J.D.C., Swenson J.E. and Andersen R. (2000). Conservation of biodiversity in Scandinavian boreal forests: large carnivores as flagships, umbrellas, indicators, or keystones?. Biodivers. Conserv. 9: 857–868CrossRefGoogle Scholar
  48. LTER. 2003. US long term ecological research network. Accessed 28 July 2004. Scholar
  49. Lund M.P. and Rahbek C. (2002). Cross-taxon congruence in complementarity and conservation of temperate biodiversity. Anim. Conserv. 5: 163–171CrossRefGoogle Scholar
  50. Mac Nally R. and Fleishman E. (2002). Using “indicator” species to model species richness: Model development and predictions. Ecol. Appl. 12: 79–92CrossRefGoogle Scholar
  51. Mac Nally R. and Fleishman E. (2004). A successful predictive model of species richness based on indicator species. Conserv. Biol. 18: 646–654Google Scholar
  52. Manne L.L. and Williams P.H. (2003). Building indicator groups based on species characteristics can improve conservation planning. Anim. Conserv. 6: 291–297CrossRefGoogle Scholar
  53. Margules C.R. and Austin M.P. (1994). Biological models for monitoring species decline: the construction and use of databases. Phil. Transact. Biol. Sci. 344: 69–75Google Scholar
  54. Margules C.R. and Pressey R.L. (2000). Systematic conservation planning. Nature 405: 243–253CrossRefPubMedGoogle Scholar
  55. Mikusinski G., Gromadzki M. and Chylarecki P. (2001). Woodpeckers as indicators of forest bird diversity. Conserv. Biol. 15: 208–217CrossRefGoogle Scholar
  56. Mills L.S., Soule M.E. and Doak D.F. (1993). The keystone-species concept in ecology and conservation. Bioscience 43: 219–224CrossRefGoogle Scholar
  57. Mittermeier R.A. (1988). Primate diversity and the tropical forest: case studies from Brazil and Madagascar and the importance of the megadiversity countries. In: Wilson, E.O. (eds) Biodiversity, pp 145–154. National Academy Press, Washington, DCGoogle Scholar
  58. Moore J.L., Balrnford A., Brooks T., Burgess N.D., Hansen L.A., Rahbek C. and Williams P.H. (2003). Performance of sub-Saharan vertebrates as indicator groups for identifying priority areas for conservation. Conserv. Biol. 17: 207–218CrossRefGoogle Scholar
  59. Moore N.W. (1962). The heaths of Dorset and their conservation. J. Ecol. 50: 369–391CrossRefGoogle Scholar
  60. Moritz C., Richardson K.S., Ferrier S., Monteith G.B., Stanisic J., Williams S.E. and Whiffin T. (2001). Biogeographical concordance and efficiency of taxon indicators for establishing conservation priority in a tropical rainforest biota. Proc. Roy. Soc. Lond. Ser. B-Biol. Sci. 268: 1875–1881CrossRefGoogle Scholar
  61. NatureServe. 2003. A Network Connecting Science with Conservation. Accessed 7 May 2003, Scholar
  62. Negi H.R. and Gadgil M. (2002). Cross-taxon surrogacy of biodiversity in the Indian Garhwal Himalaya. Biol. Conserv. 105: 143–155CrossRefGoogle Scholar
  63. Niemi G.J., Hanowski J.M., Lima A.R., Nicholls T. and Weiland N. (1997). A critical analysis on the use of indicator species in management. J. Wildlife Manage. 61: 1240–1252Google Scholar
  64. Noon B.R., Murphy D.D., Beissinger S.R., Shaffer M.L. and Dellasala D. (2003). Conservation planning for US National Forests: Conducting comprehensive biodiversity assessments. Bioscience 53: 1217–1220CrossRefGoogle Scholar
  65. Noss R.F., Carroll C., Vance-Borland K. and Wuerthner G. (2002). A multicriteria assessment of the irreplaceability and vulnerability of sites in the Greater Yellowstone Ecosystem. Conserv. Biol. 16: 895–908CrossRefGoogle Scholar
  66. Noss R.F., Quigley H.B., Hornocker M.G., Merrill T. and Paquet P.C. (1996). Conservation biology and carnivore conservation in the Rocky Mountains. Conserv. Biol. 10: 949–963CrossRefGoogle Scholar
  67. Oliver I. and Beattie A.J. (1996). Invertebrate morphospecies as surrogates for species: A case study. Conserv. Biol. 10: 99–109CrossRefGoogle Scholar
  68. Paine R.T. (1969). A note on trophic complexity and community stability. Am. Nat. 103: 91–93CrossRefGoogle Scholar
  69. Pearson D.L. and Carroll S.S. (1999). The influence of spatial scale on cross-taxon congruence patterns and prediction accuracy of species richness. J. Biogeogr. 26: 1079–1090CrossRefGoogle Scholar
  70. Poiani K.A., Merrill M.D. and Chapman K.A. (2001). Identifying conservation-priority areas in a fragmented Minnesota landscape based on the umbrella species concept and selection of large patches of natural vegetation. Conserv. Biol. 15: 513–522CrossRefGoogle Scholar
  71. Power M.E., Tilman D., Estes J.A., Menge B.A., Bond W.J., Mills L.S., Daily G., Castilla J.C., Lubchenko J. and Paine R.T. (1996). Challenges in the quest for keystones. Bioscience 46: 609–620CrossRefGoogle Scholar
  72. Prendergast J.R., Quinn R.M., Lawton J.H., Eversham B.C. and Gibbons D.W. (1993). Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365: 335–337CrossRefGoogle Scholar
  73. Pressey R.L. and Nicholls A.O. (1989). Efficiency in conservation evaluation: scoring versus iterative approaches. Biol. Conserv. 50: 199–218CrossRefGoogle Scholar
  74. Pullin A.S., Knight T.M., Stone D.A. and Charman K. (2004). Do conservation managers use scientific evidence to support their decision-making?. Biol. Conserv. 119: 245–252CrossRefGoogle Scholar
  75. Ranius T. (2002). Biodivers. Conserv. 11: 931–941CrossRefGoogle Scholar
  76. Reyers B., Kruger M. and Jaarsveld A.S. (2000). Complementarity as a biodiversity indicator strategy. Proc. Roy. Soc. Lond. Ser. B-Biol. Sci. 267: 505–513CrossRefGoogle Scholar
  77. Ricketts T.H., Daily G.C. and Ehrlich P.R. (2002). Does butterfly diversity predict moth diversity? Testing a popular indicator taxon at local scales. Biol. Conserv. 103: 361–370CrossRefGoogle Scholar
  78. Ricketts T.H., Dinerstein E., Olson D.M. and Loucks C. (1999). Who's where in North America?. Bioscience 49: 369–381CrossRefGoogle Scholar
  79. Roberge J.M. and Angelstam P. (2004). Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18: 76–85CrossRefGoogle Scholar
  80. Rubino M.J. and Hess G.R. (2003). Planning open spaces for wildlife II: mapping and verifying focal species habitat. Landscape Urban Plan. 64: 89–104CrossRefGoogle Scholar
  81. Rubinoff D. (2001). Evaluating the California gnatcatcher as an umbrella species for conservation of southern California coastal sage scrub. Conserv. Biol. 15: 1374–1383CrossRefGoogle Scholar
  82. Ryti R.T. (1992). Effect of the focal taxon on the selection of nature reserves. Ecol. Appl. 2: 404–410Google Scholar
  83. Sahlen G. and Ekestubbe K. (2001). Identification of dragonflies (Odonata) as indicators of general species richness in boreal forest lakes. Biodivers. Conserv. 10: 673–690CrossRefGoogle Scholar
  84. Sauberer N., Zulka K.P., Abensperg-Traun M., Berg H.M., Bieringer G., Milasowszky N., Moser D., Plutzar C., Pollheimer M., Storch C., Trostl R., Zechmeister H. and Grabherr G. (2004). Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. Biol. Conserv. 117: 181–190CrossRefGoogle Scholar
  85. Sauer J.R., Hines J.E. and Fallon J. 2002. The North American Breeding Bird Survey, results and analysis 1966 – 2001. Version 2002.1. USGS Patuxent Wildlife Research CenterLaurel, MD.Google Scholar
  86. Simberloff D. (1980). A succession of paradigms in ecology: essentialism to materialism and probabilism. Synthese 43: 3–39CrossRefGoogle Scholar
  87. Simberloff D. (1998). Flagships, umbrellas and keystones: is single-species management passe in the landscape era?. Biol. Conserv. 83: 247–257CrossRefGoogle Scholar
  88. Su J.C., Debinski D.M., Jakubauskas M.E. and Kindscher K. (2004). Beyond species richness: community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conserv. Biol. 18: 167–173CrossRefGoogle Scholar
  89. Summerville K.S., Ritter L.M. and Crist T.O. (2004). Forest moth taxa as indicators of lepidopteran richness and habitat disturbance: a preliminary assessment. Biol. Conserv. 116: 9–18CrossRefGoogle Scholar
  90. Suter W., Graf R.F. and Hess R. (2002). Capercaillie (Tetrao urogallus)avian biodiversity: testing the umbrella-species concept. Conserv. Biol. 16: 778–788CrossRefGoogle Scholar
  91. Swengel S.R. and Swengel A.B. (1999). Correlations in abundance of grassland songbirds and prairie butterflies. Biol. Conserv. 90: 1–11CrossRefGoogle Scholar
  92. UNEP 2002. World Conservation monitoring centre – conservation databases. Access date: 28 July 2004. Scholar
  93. Schotman A., Claassen F., Sparenburg G. and Langevelde F. (2000). Competing land use in the reserve site selection problem. Landscape Ecol. 15: 243–256CrossRefGoogle Scholar
  94. Warman L.D., Forsyth D.M., Sinclair A.R.E., Freemark K., Moore H.D., Barrett T.W., Pressey R.L. and White D. (2004). Species distributions, surrogacy, and important conservation regions in Canada. Ecol. Lett. 7: 374–379CrossRefGoogle Scholar
  95. Wilcox B.A. 1984. In situ conservation of genetic resources: determinants of minimum area requirements. In: McNeely J.A. and Miller K.R. (eds), National Parks, Conservation, and Development: The Role of Protected Areas in Sustaining Society. Smithsonian Institution Press, Washington, D.C., pp. 825.Google Scholar
  96. Williams P.H., Burgess N.D. and Rahbek C. (2000). Flagship species, ecological complementarity and conserving the diversity of mammals and birds in sub-Saharan Africa. Anim. Conserv. 3: 249–260CrossRefGoogle Scholar
  97. ZMUC (Zoological Museum University of Copenhagen) 2004. A continent-wide blueprint for conservation action in Africa: description of the databases. Accessed: 20 July 2004, Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Jorie M. Favreau
    • 1
    • 2
  • C. Ashton Drew
    • 3
  • George R. Hess
    • 4
  • Matthew J. Rubino
    • 2
  • Frank H. Koch
    • 5
  • Katherine A. Eschelbach
    • 6
  1. 1.Division of ForestryNatural Resources and Recreation, Paul Smith's CollegePaul SmithsUSA
  2. 2.Zoology DepartmentNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Marine, Earth, and Atmospheric SciencesNorth Carolina State UniversityRaleighUSA
  4. 4.Forestry DepartmentNorth Carolina State UniversityRaleighUSA
  5. 5.Center for Earth Observation/Forestry DepartmentNorth Carolina State UniversityRaleighUSA
  6. 6.Department of City and Regional PlanningUniversity of North Carolina–Chapel HillChapel HillUSA

Personalised recommendations