Biodiversity & Conservation

, Volume 15, Issue 10, pp 3341–3356

Potential Impact of Climate Change on the Northern Nemoral Forest Herb Flora of Europe

Article

Abstract

This study examines the potential impact on 21st century climate change on north- nemoral forest herb ranges at three spatial scales (Europe as whole, Northern/Southern Europe, separately, and the small north-nemoral region Denmark) and for two contrasting geographic regions (Northern and Southern Europe), and evaluates which species traits (climatic niche parameters, range location) would be most important for the range responses. The impact of climate change on the ranges of 36 north-nemoral forest herb species was estimated using a fuzzy bioclimatic envelope model that link atlas data to climate to predict bioclimatic suitability. Two global warming scenarios were investigated. Bioclimatic suitability was predicted to decline for all species in Europe as whole and in Southern Europe, while a minority would experience stable or increased suitability in Denmark and Northern Europe. No species were predicted to go extinct at a European scale under any scenario, although up to 14% of the species could be lost at the smallest scale. However, due to its strong impact on Southern Europe, warming would threaten the long-term survival of the nemoral flora. In particular in Northern Europe suitability increases would occur in unoccupied areas. Hence, dispersal limitation could be a particularly important constraint on species responses to climate change in this region. The best predictors of modelled large-scale sensitivity to global warming often included water balance niche descriptors and the latitudinal range centroid.

Keywords

Bioclimatic envelope modelling Dispersal limitation Drought Geographic variability Global warming Range shifts Spatial scale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakkenes M., Alkemade J.R.M., Ihle F., Leemans R. and Latour J.B. (2002). Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob. Change Biol. 8: 390–407 .CrossRefGoogle Scholar
  2. Bennett K.D., Tzedakis P.C. and Willis K.J. (1991). Quaternary refugia of north European trees. J. Biogeogr. 18: 103–115 .CrossRefGoogle Scholar
  3. Berger T.D. and Loutre M.F. (2002). An exceptionally long interglacial ahead?. Science 297: 1287–1288 .PubMedCrossRefGoogle Scholar
  4. Box E.O., Crumpacker D.W. and Hardin E.D. (1999). Predicted effects of climatic change on distribution of ecologically important native tree and shrub species in Florida. Climatic Change 41: 213–248 .CrossRefGoogle Scholar
  5. Breckle S.-W. (2002). Walter's Vegetation of the Earth. Springer-Verlag, Berlin, Germany .Google Scholar
  6. Brunet J. and von Oheimb G. (1998). Migration of vascular plants to secondary woodlands in southern Sweden. J. Ecol. 86: 429–438 .CrossRefGoogle Scholar
  7. Ellenberg H. (1988). Vegetation Ecology of Central Europe. Cambridge University Press, Cambridge, UK .Google Scholar
  8. Fosaa A.M., Sykes M.T., Lawesson J.E. and Gaard M. (2004). Potential effects of climate change on plant species in the Faroe Islands. Glob. Ecol. Biogeogr. 13: 427–437 .CrossRefGoogle Scholar
  9. Graae B.J., Økland R.H., Petersen P.M., Jensen K. and Fritzbøger B. (2004). Influence of historical, geographical and environmental variables on understorey composition and richness in Danish forests. J. Vege. Sci. 15: 465–474 .CrossRefGoogle Scholar
  10. Grace J. (1987). Climatic tolerance and the distribution of plants. New Phytol. 106(suppl.): 113–130 .Google Scholar
  11. Guisan A. and Zimmerman N.E. (2000). Predictive habitat distribution models in ecology. Ecol. Model. 135: 147–186 .CrossRefGoogle Scholar
  12. Hampe A. and Petit R.J. (2005). Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8: 461–467 .CrossRefGoogle Scholar
  13. Hansen K.(eds) 1984. Dansk Feltflora. Gyldendalske Boghandel, Nordisk Forlag A/S, Copenhagen, Denmark.Google Scholar
  14. Harte J., Ostling A., Green J.L. and Kinzig A. 2004. Climate change and extinction risk. Nature 430: http://dx.doi.org/10.1038/nature02718. .Google Scholar
  15. Hermy M., Honnay O., Firbank L., Grashof-Bokdam C. and Lawesson J. (1999). An ecological comparison between ancient and other forest plant species of Europeand the implications for forest conservation. Biol. Conser. 91: 9–22 .CrossRefGoogle Scholar
  16. Hewitt G.M. (1999). Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68: 87–112 .CrossRefGoogle Scholar
  17. Honnay O., Verheyen K., Butaye J., Jacquemyn H., Bossuyt B. and Hermy M. (2002). Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecol. Lett. 5: 525–530 .CrossRefGoogle Scholar
  18. (2001). Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK .Google Scholar
  19. IPCC 2001. Climate Change 2001: Synthesis Report. Cambridge University Press, Cambridge, UK.Google Scholar
  20. Iverson L.R. and Prasad A.M. (1998). Predicting abundance of 80 tree species following climate change in the Eastern United States. Ecol. Monogr. 68: 465–485 .CrossRefGoogle Scholar
  21. Jalas J. and Suominen J.(eds) 1994. Atlas Florae Europaeae: Distribution of Vascular Plants in Europe, Vol. 1–10. The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki, Finland.Google Scholar
  22. Kosko B. (1994). Fuzzy Thinking: The New Science of Fuzzy Logic. Harper Collins, London, UK .Google Scholar
  23. Kriticos D.J., Sutherst R.W., Brown J.R., Adkins S.W. and Maywald G.F. (2003). Climate change and biotic invasions: a case history of a tropical woody vine. Biol. Invasions 5: 147–165 .CrossRefGoogle Scholar
  24. Latham R.E. and Ricklefs R.E. (1993). Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness. Oikos 67: 325–333 .Google Scholar
  25. Lugo A.E., Brown S.L., Dodson R., Smith T.S. and Shugart H.H. (1999). The Holdridge life zones of the conterminous United States in relation to ecosystem mapping. J. Biogeogr. 26: 1025–1038 .CrossRefGoogle Scholar
  26. Mai D.H. (1995). Tertiäre Vegetationsgeschichte Europas – Metoden und Ergebnisse. Gustav Fischer Verlag, Jena, Germany, 691 .Google Scholar
  27. Mátyás G. (1997). Genetics and adaptation to climate change: a case study of trees. In: Huntley, B., Cramer, W., Morgan, A.V., Prentice, H.C. and Allen, J.R.M. (eds) Past and Future Rapid Environmental Changes: The Spatial and Evolutionary Responses of Terrestrial Biota, pp 357–370. Springer-Verlag, Berlin, Germany .Google Scholar
  28. Mossberg B., Stenberg L. and Ericsson S. (1994). Den store nordiske flora G.E.C.. Gads Forlag, Copenhagen .Google Scholar
  29. New M., Lister D., Hulme M. and Makin I. (2002). A high-resolution data set of surface climate over global land areas. Climate Res. 21: 1–25 .Google Scholar
  30. Pearson R.G. and Dawson T.P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12: 361–371 .CrossRefGoogle Scholar
  31. Pearson R.G., Dawson T.P. and Liu C. (2004). Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27: 285–298 .CrossRefGoogle Scholar
  32. Peterken G.F. and Game M. (1981). Historical factors affecting the distribution of Mercurialis perennis in Central Lincolnshire. J. Ecol. 69: 781–796 .CrossRefGoogle Scholar
  33. Petit R.J., Aguinagalde I., Beaulieu J.L.d., Bittkau C., Brewer S., Cheddadi R., Ennos R., Fineschi S., Grivet D., Lascoux M., Mohanty A., Muller-Starck G., Demesure-Musch B., Palme A., Martin J.P., Rendell S. and Vendramin G.G. (2003). Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300: 1563–1565 .PubMedCrossRefGoogle Scholar
  34. Prentice I.C., Cramer W., Harrison S.P., Leemans R., Monserud R.A. and Solomon A.M. (1992). A global biome model based on plant physiology and dominancesoil properties and climate. J. Biogeogr. 19: 117–134 .CrossRefGoogle Scholar
  35. Quinn G.P. and Keough M.J. (2002). Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, UK .Google Scholar
  36. Rehfeldt G.E. 2004. Interspecific and intraspecific variation in Picea engelmanniiits congeneric cohorts: biosystematics, genecology, and climate change. General Technical Report RMRS-GTR-134. US Department of Agriculture Forest ServiceRocky Mountain Research, Fort Collins, Colorado, USA, 18 pp.Google Scholar
  37. Robertsson M.P., Villet M.H. and Palmer A.R. (2004). A fuzzy classification technique for predicting species’ distributions: applications using invasive alien plants and indigenous insects. Divers. Distribut. 10: 461–474 .CrossRefGoogle Scholar
  38. Sakai A. and Weiser C.J. (1973). Freezing resistance of trees in North America with reference to tree regions. Ecology 54: 118–126 .CrossRefGoogle Scholar
  39. Salisbury E.J. (1926). The geographical distribution of plants in relation to climatic factors. Geogr. J. 57: 312–335 .CrossRefGoogle Scholar
  40. SAS Institute Inc. 2002. JMP 5.0. Cary, North Carolina, USA.Google Scholar
  41. Savolainen O., Bokma F., Garcia-Gil R., Komulainen P. and Repo T. (2004). Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes. Forest Ecol. Manag. 197: 79–89 .CrossRefGoogle Scholar
  42. Skov F. and Svenning J.-C. (2004). Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27: 366–380 .CrossRefGoogle Scholar
  43. Stephenson N.L. (1998). Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. J. Biogeogr. 25: 855–870 .CrossRefGoogle Scholar
  44. Svenning J.-C. (2002). A review of natural vegetation openness in north-western Europe. Biol. Conserv. 104: 133–148 .CrossRefGoogle Scholar
  45. Svenning J.-C. (2003). Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecol. Lett. 6: 646–653 .CrossRefGoogle Scholar
  46. Svenning J.-C. and Skov F. (2004). Limited filling of the potential range in European tree species. Ecol. Lett. 7: 565–573 .CrossRefGoogle Scholar
  47. Svenning J.-C. and Skov F. (2005). The relative roles of environment and history as controls of tree species composition and richness in Europe. J. Biogeogr. 32: 1019–1033 .CrossRefGoogle Scholar
  48. Sykes M.T., Prentice I.C. and Cramer W. (1996). A bioclimatic model for the potential distributions of north European tree species under present and future climates. J. Biogeogr. 23: 203–233 .Google Scholar
  49. Taberlet P. and Cheddadi R. (2002). Quaternary refugia and persistence of biodiversity. Science 297: 2009–2010 .PubMedCrossRefGoogle Scholar
  50. Tchebakova N., Rehfeldt G.E. and Parfenova E. (2003). Redistribution of vegetation zones and populations of Larix sibirica Ledb. and Pinus sylvestris L. in central Siberia in a warming climate. Siberian Ecol. J. 10: 677–687 .Google Scholar
  51. Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., Erasmus B.F.N., Grainger A., Hannah L., Hughes L., Huntley B., van Jaarsveld A.S., Midgley G.F., Miles L., Ortega-Huerta M.A., Peterson A.T., Phillips O.L. and Williams S.E. (2004). Extinction risk from climate change. Nature 427: 145–148 .PubMedCrossRefGoogle Scholar
  52. Thuiller W. (2003). BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9: 1353–1362 .CrossRefGoogle Scholar
  53. Travis J.M.J. (2003). Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc. Roy. Soc. Lond. Ser. B 270: 467–473 .CrossRefGoogle Scholar
  54. Tutin T.G., Burges N.A., Chater A.O., Edmondson J.R., Heywood V.H., Moore D.M., Valentine D.H., Walters S.M. and Webb D.A.(eds) 1993. Flora Europaea: Volume 1, Psilotaceae to Platanaceae. Cambridge University Press, Cambridge, UK.Google Scholar
  55. Tzedakis P.C., Lawson I.T., Frogley M.R., Hewitt G.M. and Preece R.C. (2002). Buffered tree population changes in a Quaternary refugium: evolutionary implications. Science 297: 2044–2047 .PubMedCrossRefGoogle Scholar
  56. Wijmstra T.A. and Zagwijn W.H. (1971). The floral record of the Late Cenozoic of Europe. In: Turekian, K.K. (eds) The Late Cenozoic Glacial Ages, pp 391–424. Yale University Press, New Haven, USA .Google Scholar
  57. Walther G.-R. (2000). Climatic forcing on the dispersal of exotic species. Phytocoenologia 30: 409–430 .Google Scholar
  58. Walther G.-R. (2003). Plants in a warmer world. Perspect. Plant Ecol. Evol. Syst. 6: 169–185 .CrossRefGoogle Scholar
  59. Widmer A. and Lexer C. (2001). Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends Ecol. Evol. 16: 267–269 .PubMedCrossRefGoogle Scholar
  60. Williams S.E., Bolitho E.E. and Fox S. (2003). Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc. Roy. Soc. Lond. Ser. B 270: 1887–1892 .CrossRefGoogle Scholar
  61. Willis K.J. (1996). Where did all the flowers go? The fate of the temperate European flora during glacial periods. Endeavour 20: 110–114 .CrossRefGoogle Scholar
  62. Woodward F.I. (1990). The impact of low temperatures in controlling the geographical distribution of plants. Philos. Trans. Roy. Soc. Lond. Ser. B 326: 585–593.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of AarhusUniversitetsparkenDenmark
  2. 2.Department of Wildlife Ecology and BiodiversityNational Environmental Research Institute of DenmarkRøndeDenmark

Personalised recommendations