Biodiversity & Conservation

, Volume 15, Issue 5, pp 1811–1828 | Cite as

Distribution and Species Diversity of Plant Communities along Transect on the Northeastern Tibetan Plateau

Article

Abstract

The distribution and species diversity of plant communities along a 600 km transect through the northeastern Tibetan Plateau (32°42′–35°07′ N, 101°02′–97°38′ E) with altitudes from 3255 to 4460 m are described. The transect started from the Youyi Bridge of Banma through Dari, Maqin and Maduo to Zaling Lake. The data from 47 plots along the transect are summarized and analyzed. The mean annual temperature, the mean annual rainfall and the length of growing season decreases from 2.6 to −4.5 °C, from 767.2 to 240.1 mm, from 210 to 140 days, respectively, along the transect from the southeastern Banma to northwestern Zaling Lake. The number of vascular plant species recorded in 47 plots is 242 including 2 tree, 34 shrub, 206 herb species. Main vegetation types on the transect from southeast to northwest are: Sabina convallium forest, Picea likiangensis forest, Pyracantha fortuneana + Spiraea alpina shrub, Hippophae neurocarpu shrub, Sibiraea angustata + Polygonum viviparum shrub, Stellera chamaejasme herb meadow, Potentilla fruticosa + Salix obscura + Carex sp. Shrub, Kobresia capillifolia meadow, P. froticosa + Kobresia humilis shrub, Caragana jubata + S. obscura shrub, Kobresia tibetica meadow, Kobresia pygmaea meadow, K. pygmaea + Stipa purpurea steppe meadow, Stipa purpurea steppe. Plant richness and diversity index all showed a decreasing trend with increasing of elevation along transect from southeast to northwest. Detailed information on altitudinal ranges and distribution of the alpine vegetation, vascular flora and environments over the alpine zone at northeastern Tibetan Plateau provides baseline records relevant to future assessment of probable effects of global climate changes.

Keywords

Distribution Plant community Species diversity Tibetan Plateau Transect 

Abbreviations

DBH

Diameter at Breast Height

GPS

Global Positioning System

IV

Important Values

ELEV

Elevation

LAT

Latitude

LONG

Longitude

MAT

Mean annual temperature

MAR

Mean annual rainfall

LGS

Length of growing season

TGS

Temperature during growing season

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alard, D., Poudevigne, I. 2000Diversity patterns in grassland along a landscape gradient in northwestern FranceJ. Veg. Sci.11287294CrossRefGoogle Scholar
  2. Alard, D., Bance, J.F., Frileux, P.N. 1994Grassland vegetation as indicator of the main agro-ecological factors in a rural landscape: consequences for biodiversity and wildlife conservation in Central Normandy (France)J. Environ. Manage.4291109CrossRefGoogle Scholar
  3. Barrera, M.D., Frangi, J.L., Richter, L.L., Perdomo, M.H., Pinedo, L.B. 2000Structural and functional changes in Nothofagus pumilio forests along an altitudinal gradient in Tierra del Fu-egoArgentinaJ. Veg. Sci.11179188CrossRefGoogle Scholar
  4. Bazzaz, F.A. 1975Plant species diversity in old-field successional ecosystems in southern IllinoisEcology56485488CrossRefGoogle Scholar
  5. Chang, D.H.S. 1983The Tibetan Plateau in relation to the vegetation of ChinaAnn. Missouri Bot. Gardens70564570CrossRefGoogle Scholar
  6. Fisher, A.G. 1960Latitudinal variation in organic diversityEvolution146481CrossRefGoogle Scholar
  7. Gillison, A.N., Brewer, K.R.W. 1985The use of gradient directed transects or gradsects on natural resource surveysJ. Environ. Manage.20103127Google Scholar
  8. Gould, W.A., Walker, M.D. 1997Landscape scale patterns in plant species richness along an arctic riverCan. J. Bot.75174865Google Scholar
  9. Houssard, C.J., Escarr, J., Romane, F. 1980Development of species diversity in some Mediterranean plant communitiesVegetatio435972CrossRefGoogle Scholar
  10. Hou, X.Y., Zhang, X.Sh. 1980The Geographic Distributed Pattern of the Vegetation of ChinaScience PressBeijing731738Google Scholar
  11. Korner, C.H. 1999Alpine Plant Life: Functional Plant Ecology of High Mountain EcosystemSpringerBerlinGoogle Scholar
  12. Mark, A.F., Dickinson, K.J.M., Hofstede, R.G.M. 2000Alpine vegetation, plant distribution, life forms and environments in a Perhumid New Zealand region: oceanic and tropical high mountain. affinitiesArct. Antarct. Alp. Res.32240254CrossRefGoogle Scholar
  13. Messerli, B.Ives, J.D. eds. 1997Mountains of the World: a Global PriorityPathenonNew YorkGoogle Scholar
  14. Nicholson, J.D., Monk, C.D. 1974Plant species diversity in old-field succession on the Georgia PiedmontEcology5510751085CrossRefGoogle Scholar
  15. Odland, A., Birks, H.J.B. 1999The altitudinal gradient of vascular plant richness in Aurlandwestern NorwayEcography22548566Google Scholar
  16. Pielou, E.C. 1969An Introduction to Mathematical EcologyWileyNew YorkGoogle Scholar
  17. Rahbek, C. 1995The altitudinal gradient of species richness: a uniform pattern?Ecography18200205Google Scholar
  18. Rohde, K. 1992Latitudinal gradients in species diversity: the search for the primary causeOikos65514527Google Scholar
  19. Rosenzweig, M.L. 1995Species Diversity in Space and TimeCambridge University PressCambridge, UKGoogle Scholar
  20. Sun, H.Q., Zhu, Zh.H. 2000Plant community diversity in relation to altitude gradient at Kobresia pygmaea meadowGrassl. China51822Google Scholar
  21. Wang, Q.J., Liu, J.Q., Zhao, X.Q. 2002

    Patterns of plant species diversity in the northeastern Tibetan Plateau, Qinghai, China

    Korner, C.Spehn, E. eds. Mountain Biodiversity – A Global AssessmentCRC PressLondon, UK149152
    Google Scholar
  22. Wang, W.Y. 2001The structure and plant species diversity of the degraded ecosystems on alpine Kobresia meadowActa Prataculturae Sinica10714Google Scholar
  23. XU, M.Q. 2002Primary study of plankton community diversity of the Gahai Salt Lake in the Qaidam Basin of the Qinghai–Tibet PlateauBiodiversity Science103843Google Scholar
  24. Yachi, S., Loreau, M. 1999Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesisProc. Natl. Acad. Sci. USA9614631468PubMedCrossRefGoogle Scholar
  25. Zhao, X.Q., Zhou, X.M. 1999Ecological basis of alpine meadow ecosystem management in Tibet: Haibei Alpine Meadow Ecosystem Research StationAmbio28642647Google Scholar
  26. Zhou X.M., Du Q. and Wang GB. 1987. Qinghai Vegetation. Qinghai People’s Press, pp.100–109.Google Scholar
  27. Zhou, G.Sh., Zhang, X.Sh. 1996Study on climate-vegetation classification for global change in ChinaActa Bot. Sin.38817Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Wenying Wang
    • 1
    • 3
  • Qiji Wang
    • 2
  • Shixiong Li
    • 2
  • Gang Wang
    • 1
  1. 1.Department of BiologyLanzhou UniversityLanzhouChina
  2. 2.Northwest Plateau Institute of Biologythe Chinese Academy of SciencesXiningChina
  3. 3.Department of BiologyQinghai Normal UniversityXiningChina

Personalised recommendations