Biodiversity & Conservation

, Volume 15, Issue 11, pp 3653–3674 | Cite as

Coral diversity across a disturbance gradient in the Pulau Seribu reef complex off Jakarta, Indonesia

  • Daniel  F. R. Cleary
  • Suharsono
  • Bert W. Hoeksema
Article

Abstract

Very few coral reefs are located close enough to metropolitan cities to study the influence of large urban populations on reef communities. Here, we compare the impact of a large-scale disturbance gradient with local-scale disturbance on coral richness, cover, and composition in the Jakarta Bay and Pulau Seribu reef complex off Jakarta, Indonesia. We found no effect of local land-use type of coral reef islands on richness, composition or cover, nor did taxon richness differ among zones at the large-scale. There was, however, a pronounced difference in composition and coral cover among zones. Cover was very low and composition differed markedly in the near-shore zone 1 (Jakarta Bay) where human-induced disturbance is most intense. Cover was highest in the outlying reefs of zone 3. The highly perturbed zone 1 reefs were, furthermore, distinguished by the virtual absence of otherwise abundant coral taxa such as Acropora hyacinthus and Porites rus and the prevalence of taxa such as Oulastrea crispata and Favia maxima. Almost 60% of the spatial variation in composition was related to variation in shelf depth and island size. The importance of shelf depth was related to the prevalence of a strong environmental gradient in reef depth, pollution, and mechanical reef disturbance and salinity from Jakarta Bay to the outlying reefs. Although there was a significant univariate relationship between spatial variation in composition and distance, this did not enter into the multivariate model, except when presence–absence data was used, indicating that environmental processes are the primary structuring forces in determining local coral assemblage composition across the Pulau Seribu complex.

Keywords

Composition Indicator taxa Indonesia Large-scale Local-scale Species richness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck J., Schulze C.H., Linsenmair K.E. and Fiedler K. (2002). From forest to farmland: diversity of geometrid moths along two habitat gradients on Borneo. J. Trop. Ecol. 18: 33–51CrossRefGoogle Scholar
  2. Bellwood D.R. and Hughes T.P. (2001). Regional-scale assembly rules and biodiversity of coral reefs. Science 292: 1532–1534PubMedCrossRefGoogle Scholar
  3. Best M.B., Hoeksema B.W., Moka W., Moll H., Sutarna I.N. and Suharsono (1989). Recent scleractinian coral species collected during the SnelliusII Expedition in eastern Indonesia. Neth. J. Sea Res. 23: 107–115CrossRefGoogle Scholar
  4. Bray J.R. and Curtis J.T. (1957). An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27: 325–349CrossRefGoogle Scholar
  5. Brown B.E. and Suharsono (1990). Damage and recovery of coral reefs affected by El Niño related seawater warming in the Thousand Islands, Indonesia. Coral Reefs 8: 163–170CrossRefGoogle Scholar
  6. Brown J.H., Whitman T.G., Morgan Ernest S.K. and Gehring C.A. (2001). Complex species interactions and the dynamics of ecological systems: long-term experiments. Science 293: 643–650PubMedCrossRefGoogle Scholar
  7. Bruner A.G., Gullison R.E., Rice R.E. and da Fonseca G.A.B. (2001). Effectiveness of parks in protecting tropical biodiversity. Science 291: 125–128PubMedCrossRefGoogle Scholar
  8. Casgrain P. 2001. Permute! 3.4.9. User’s Manual at Freely available at http://www.fas.umontreal.ca/biol/casgrain/en/labo/permute/index.html.
  9. Chapin F.S., Zavaleta E.S., Eviner V.T., Naylor R.L., Vitousek P.M., Reynolds H.L., Hooper D.U., Lavorel S., Sala O.E., Hobbie S.E., Mack M.C. and Díaz S. (2000). Consequences of changing biodiversity. Nature 405: 234–244PubMedCrossRefGoogle Scholar
  10. Chen C.A. (1999). Analysis of scleractinian distribution in Taiwan indicating a pattern congruent with sea surface temperatures and currents: examples from Acropora and Faviidae corals. Zool. Stud. 38: 119–129Google Scholar
  11. Clarke K.R. and Gorley R.N. (2001). Primer v5: user manual/tutorial. Primer-E Ltd., Plymouth, UKGoogle Scholar
  12. Coles S.L. (1996). Corals of Oman. Keech, Samdani and Coles, North Yorkshire, UK, 106Google Scholar
  13. Cope M. and Morton B. (1988). The scleractinian coral community at Hoi Ha Wan, Hong Kong. Asian Mar. Biol. 5: 41–52Google Scholar
  14. Cornell H.V. and Karslon R.H. (2000). Coral species richness: ecological versus biogeographical influences. Coral Reefs 19: 37–49CrossRefGoogle Scholar
  15. DeVantier L., Budiyanto A., Tuti Y., Imanto P., Ledesma R. and Suharsono (1998). Status of coral communities of Pulau Seribu (Indonesia). In: Soemodihardjo, S. (eds) Contending with Global Change 10. Proceedings: Coral Reef Evaluation Workshop, Pulau Seribu, Jakarta, Indonesia, 1995, pp 1–24. UNESCO, JakartaGoogle Scholar
  16. Ditlev H. (1978). Zonation of corals (Scleractinia: Coelenterata) on intertidal reef flats at Ko Phuket, Eastern Indian Ocean. Mar. Biol. 47: 29–39CrossRefGoogle Scholar
  17. Djohani R.H. (1994). Patterns of spatial distribution, diversity and cover of corals in Pulau Seribu National Park: implications for the design of core coral sanctuaries. Proc. IOC-WESTPAC 3rd Int. Sci. Symp. Bali, Indonesia, 265–279Google Scholar
  18. Done T.J. (1982). Patterns in the distribution of coral communities across the Central Great Barrier Reef. Coral Reefs 1: 95–107CrossRefGoogle Scholar
  19. Dufrêne M. 1998. IndVal 2.0 programme at freely available at http://mrw.wallonie.be/dgrne/sibw/ outils/indval/home.html.
  20. Dufrêne M. and Legendre P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67: 345–366CrossRefGoogle Scholar
  21. Duivenvoorden J.F., Svenning J.C. and Wright S.J. (2002). Beta-diversity in tropical forests. Science 295: 636–637PubMedCrossRefGoogle Scholar
  22. Ellingsen K.E. (2002). Soft-sediment benthic biodiversity on the continental shelf in relation to environmental variability. Mar. Ecol. Prog. Ser. 232: 15–27Google Scholar
  23. English S., Wilkinson C. and Baker U. 1994. Survey manual for tropic marine resources. ASEAN Australia marine Science Project: Living Coastal Resources. Australian Institute of marine science, pp. 1–368.Google Scholar
  24. Erdmann M. 1998. Destructive fishing practice in Kepulauan Seribu Archipelago. In: Proceedings of the Coral Reef Evaluation Workshop, Kepulauan Seribu, Jakarta, 11-20 September 1995, 84–89.Google Scholar
  25. Githaiga-Mwicigi J.M.W., Fairbanks D.H.K. and Midgley G. (2002). Hierarchical processes define spatial patterns of avian assemblages restricted and endemic to the arid Karoo, South Africa. J. Biogeogr. 29: 1067–1087CrossRefGoogle Scholar
  26. Harger J.R.E. (1986a). Responses of coral reef communities to environmental variables in the Kepulauan Seribu island chain. UNESCO Rep. Mar. Sci. 40: 164–173Google Scholar
  27. Harger J.R.E. 1986b. Community structure as a response to natural and man-made environmental variables in the Pulau Seribu island chain. In: Soemodihardjo S. (ed.), Proceedings of MABCOMAR Regional Workshop on Coral Reefs Ecosystems: Their management practices and Research/Training needs, Bogor, 1986. UNESCO and LIPI, Jakarta, pp. 34–85.Google Scholar
  28. Harger J.R.E. (1998). Sampling periodicity for tracking change in coral reefs: the case of Pulau Seribu. In: Soemodihardjo, S. (eds) Contending with Global Change 10. Proceedings: Coral Reef Evaluation Workshop, pp 25–26. Pulau Seribu, Jakarta, IndonesiaGoogle Scholar
  29. Hoeksema B.W. (1989). Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinia: Fungiidae). Zool. Verh. 254: 1–295Google Scholar
  30. Hoeksema B.W. 1990. Systematics and ecology of mushroom corals (Scleractinia: Fungiidae). PhD-thesis, Leiden University.Google Scholar
  31. Hoeksema B.W. (1991). Control of bleaching in mushroom coral populations (Scleractinia: Fungiidae) in the Java Sea: stress tolerance and interference by life history strategy. Mar. Ecol. Prog. Ser. 74: 225–237Google Scholar
  32. Hoeksema B.W. (1992). The position of northern New Guinea in the center of marine benthic diversity: a reef coral perspective. Proc. 7th Int. Coral Reef Symp. 2: 710–717Google Scholar
  33. Hoeksema B.W. and Putra K.S. (2002). The reef coral fauna of Bali in the centre of marine diversity. Proc. 9th Int. Coral Reef Symp. 1: 173–178Google Scholar
  34. Hughes T.P., Baird A.H., Bellwood D.R., Card M., Connolly S.R., Folke C., Grosberg R., Hoegh-Guldberg O., Jackson J.B.C., Lough J.M., Marshall P., Nyström M., Palumbi S.R., Pandolfi J.M., Rosen B. and Roughgarden J. (2003). Climate changehuman impacts, and the resilience of coral reefs. Science 301: 929–933PubMedCrossRefGoogle Scholar
  35. Hughes T.P., Baird A.H., Dinsdale E.A., Harriott V.J., Moltschaniwskyj N.A., Pratchett M.S., Tanner J.E. and Willis B.L. (2002). Detecting regional variation using meta-analysis and large-scale sampling: latitudinal patterns in recruitment. Ecology 83: 436–451Google Scholar
  36. Hungspreugs M. (1988). Heavy metals and other non-oil pollutants in Southeast Asia. Ambio 17: 178–182Google Scholar
  37. Karlson R.H. and Cornell H.V. (1998). Scale-dependent variation in local vs. regional effects on coral species richness. Ecol. Monogr. 68: 259–274CrossRefGoogle Scholar
  38. Karlson R.H. and Cornell H.V. (1999). Integration of local and regional perspectives on the species richness of coral assemblages. Am. Zool. 39: 104–112Google Scholar
  39. Karlson R.H. and Cornell H.V. (2002). Species richness of coral assemblages: detecting regional influences at local spatial scales. Ecology 83: 452–463Google Scholar
  40. Kuijper M.W.M. (2003). Marine and coastal environmental awareness building within the context of UNESCO’s activities in Asia and the Pacific. Mar. Pollut. Bull. 47: 265–272PubMedCrossRefGoogle Scholar
  41. Lam K.K.Y. 2000. Early growth of a pioneer recruited coral Oulastrea crispata (Scleractinia, Faviidae) on PFA-concrete blocks in a marine park in Hong Kong, China.Google Scholar
  42. Magalhaes M.F., Batalha D.C. and Collares-Pereira M.J. (2002). Gradients in stream fish assemblages across a Mediterranean landscape: contributions of environmental factors and spatial structure. Freshwater Biol. 47: 1015–1031CrossRefGoogle Scholar
  43. Margules C.R. and Pressey R.L. (2000). Systematic conservation planning. Nature 405: 243–253PubMedCrossRefGoogle Scholar
  44. Moll H. and Suharsono (1986). Distribution, diversity and abundance of reef corals in Jakarta Bay and Kepulauan Seribu. UNESCO Rep. Mar. Sci. 40: 112–125Google Scholar
  45. Moll H. 1983. Lonation and Diversity of Scleractinia on Reefs off SW Sulawesi, Indonesia. Ph.D. Thesis, University of Leiden.Google Scholar
  46. Noss R.F. (1990). Indicators for monitoring biodiversity: a hierarchical approach. Conserv. Biol. 4: 355–364CrossRefGoogle Scholar
  47. Ongkosongo O.S.R. 1986. Some harmful stresses to the Seribu coral reefs, Indonesia. In: Soemodihardjo S. (ed.), Proceedings of MAB-COMAR Regional Workshop on Coral Reefs Ecosystems: Their Management Practices and Research/Training Needs, Bogor, 1986. UNESCO and LIPI, Jakarta, pp. 133–142.Google Scholar
  48. Ongkosongo O.S.R. and Sukarno (1986). Background to the study sites in the Bay of Jakarta and Kepulauan Seribu. UNESCO Rep. Mar. Sci. 40: 56–79Google Scholar
  49. Pandolfi J.M. (2002). Coral community dynamics at multiple scales. Coral Reefs 21: 13–23Google Scholar
  50. Pandolfi J.M., Bradbury R.H., Sala E., Hughes T.P., Bjorndal K.A., Cooke R.G., McArdle D., McClenachan L., Newman M.J.H., Paredes G., Warner R.R. and Jackson J.B.C. (2003). Global trajectories of the long-term decline of coral reef ecosystems. Science 301: 955–958PubMedCrossRefGoogle Scholar
  51. Plotkin J.B. and Muller-Landau H.C. (2002). Sampling the species composition of a landscape. Ecology 83: 3344–3356Google Scholar
  52. Rees J.G., Setiapermana D., Sharp V.A., Weeks J.M. and Williams T.M. (1999). Evaluation of the impacts of land-based contaminants on the benthic faunas of Jakarta Bay, Indonesia. Oceanolica Acta 22: 627–640CrossRefGoogle Scholar
  53. McGeoch M.A., Chown S.L., Rensburg B.J. and Jaarsveld A.S. (1999). Conservation of heterogeneity among dung beetles in the Maputaland Centre of Endemism, South Africa. Biol. Conserv. 88: 145–153CrossRefGoogle Scholar
  54. Sala E., Aburto-Oropeza O., Peredes G., Parra I., Barrera J.C. and Dayton P.K. (2002). A general model for designing networks of marine reserves. Science 298: 1991–1993PubMedCrossRefGoogle Scholar
  55. Scott P.J.B. (1984). The Corals of Hong Kong. Hong Kong University Press, Hong Kong, 1–112Google Scholar
  56. Sheppard C.R.C. (2003). Predicted recurrences of mass coral mortality in the Indian Ocean. Nature 425: 294–297PubMedCrossRefGoogle Scholar
  57. Sørensen T. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Det Kong Danske Vidensk Selsk Biol Skr (Copenhagen) 5: 1–34Google Scholar
  58. Stoddart D.R. and Brown B.E. (1986). Umbgrove’s islands revisited. UNESCO Rep. Mar. Sci. 40: 80–98Google Scholar
  59. Sukarno (1987). The effect of environmental trends and associated human damage on coral reefs in the Seribu islands, Jakarta. BIOTROP Spec. Publ. 29: 111–121Google Scholar
  60. Tomascik T., Suharsono and Mah A.J. 1994. Case histories: a historical perspective of the natural and anthropogenic impacts in the Indonesian Archipelago with a focus on the Kepulauan Seribu, Java Sea. In: Ginsburg R.N. (ed.), Proceedings of the Colloquium on Global Aspects of Coral reefs: Health, Hazards and History, 1993. RSMAS, University of Miami, pp. 304–310.Google Scholar
  61. Umbgrove J.H.F. (1928). De koraalriffen in de baai van Batavia. Wetensch Meded Dienst Mijnb Ned Indie 7: 1–69Google Scholar
  62. Umbgrove J.H.F. (1929). The influence of the monsoons on the geomorphology of coral islands. Proc. 4th Pac. Sci. Congr. 2A: 49–54Google Scholar
  63. Umbgrove J.H.F. (1939). Madreporaria from the bay of Batavia. Zool. Meded. 22: 1–64Google Scholar
  64. Umbgrove J.H.F. (1947). Coral reefs in the East Indies. Bulletin of the Geological Society of America 58: 729–778CrossRefGoogle Scholar
  65. Uneputty P.A. and Evans S.M. (1997). Accumulation of beach litter on islands of the Pulau Seribu Archipelago, Indonesia. Mar. Pollut. Bull. 34: 652–655CrossRefGoogle Scholar
  66. Vail L. and Thamrongnawasawat T. (1998). Echinoderms associated woth coral reefs in Jakarta Bay and Kepulauan Seribu. In: Soemodihardjo, S. (eds) Contending with Global Change 10. Proceedings: Coral Reef Evaluation Workshop, Pulau Seribu, Jakarta, Indonesia, 1995, pp 55–65. UNESCO, JakartaGoogle Scholar
  67. Veron J.E.N. (1995). Corals in Space and Time. Cornell University Press, Ithaca, 1–321Google Scholar
  68. Veron J.E.N. and Marsh L.M. (1988). Hermatypic corals of western Australia. Rec. West Aust. Mus. Suppl. 29: 1–136Google Scholar
  69. Veron J.E.N. and Pichon M. (1976). Scleractinia of Eastern Australia, Pt 1. Aust. Inst. Mar. Sci. Monogr. Ser. 1: 1–86Google Scholar
  70. Veron J.E.N. and Pichon M. (1979). Scleractinia of Eastern Australia, Pt 3. Aust. Inst. Mar. Sci. Monogr. Ser. 4: 1–459Google Scholar
  71. Veron J.E.N. and Pichon M. (1982). Scleractinia of Eastern Australia, Pt 4. Aust. Inst. Mar. Sci. Monogr. Ser. 5: 1–159Google Scholar
  72. Veron J.E.N., Pichon M. and Wijsman-Best M. (1977). Scleractinia of Eastern Australia, Pt 2. Aust. Inst. Mar. Sci. Monogr. Ser. 3: 1–233Google Scholar
  73. Veron J.E.N. and Wallace C.C. (1984). Scleractinia of Eastern Australia, Pt 5. Aust. Inst. Mar. Sci. Monogr. Ser. 6: 1–485Google Scholar
  74. Verwey J. (1931). Coral reef studies III. Geomorphological notes on coral reefs of Batavia bay. Treubia 13: 199–215Google Scholar
  75. Wallace C.C. (1999). Staghorn Corals of the World. CSIRO, Collingwood, 1–421Google Scholar
  76. Wallace C.C., Hoeksema B.W., Bellwood D.R., Hutchings P.A., Barber P.H., Erdmann M., Wolstenholme J. and Paulay (2002). Nature and origins of unique high diversity reef faunas in the Bay of Tomini, Central Sulawesi: the ultimate “centre of diversity”?. Proc. 9th Int. Coral Reef Symp. 1: 185–192Google Scholar
  77. Warwick R.M., Clarke K.R. and Suharsono (1990). A statistical analysis of coral community responses to the 1982–83 El Niño in the Thousand Islands, Indonesia. Coral Reefs 8: 171–179CrossRefGoogle Scholar
  78. Williams T.M., Rees J.G. and Setiapermana D. (2000). Metals and trace organic compounds in sediments and waters of Jakarta Bay and the Pulau Seribu Complex, Indonesia. Mar. Pollut. Bull. 40: 277–285CrossRefGoogle Scholar
  79. Willoughby N.G. (1986). Man-made flotsam on the strand-lines of the Thousand Islands (Kepuluan Seribu) Jakarta, Java. UNESCO Rep. Mar. Sci. 40: 157–163Google Scholar
  80. Yamashiro H. (2000). Variation and plasticity of skeletal color in the zebra coral Oulastrea crsipata. Zool. Sci. 17: 827–831CrossRefGoogle Scholar
  81. Zorn P., Stephenson W. and Grigoriev P. (2001). An ecosystem management program and assessment process for Ontario national parks. Conserv. Biol. 15: 353–362CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Daniel  F. R. Cleary
    • 1
    • 2
  • Suharsono
    • 3
  • Bert W. Hoeksema
    • 1
  1. 1.National Museum of Natural History ‘Naturalis’LeidenThe Netherlands
  2. 2.Institute for Biodiversity and Ecosystem Dynamics (Zoological Museum)University of AmsterdamAmsterdamThe Netherlands
  3. 3.Research Centre for OceanographyJakartaIndonesia

Personalised recommendations