Biodiversity & Conservation

, Volume 15, Issue 4, pp 1129–1142 | Cite as

Forest Management and Plant Species Diversity in Chestnut Stands of Three Mediterranean Areas

  • Hélène GondardEmail author
  • François Romane
  • Ignacio Santa Regina
  • Salvatore Leonardi


Over many centuries, chestnut fruits had an important role as food, while chestnut wood was used for local purposes. Today sweet chestnut stands are very common around the western Mediterranean Basin, and it is necessary to analyze the dynamic of plant species diversity in different chestnut stand types (groves and coppices) to guide management strategies that will allow the conservation of biodiversity. Our objective was to analyze consequences on plant species diversity of various management strategies in chestnut stands of three Mediterranean areas, Salamanca (Spain), the Cévennes (France), and Etna volcano (Italy). We found that plant species diversity is different according to management types; it is higher in groves than in coppice stands. We also demonstrated that Castanea sativa cultivated groves were characterized by small heliophillous therophytes. C. sativa abandoned groves, mixed C. sativa–Quercus pyrenaica coppice stands, Q. pyrenaica coppice stands, and young C. sativa coppice stands were characterized by hemicryptophytes with anemochorous dispersal mode and chamaephytes. Medium and old C. sativa coppice stands (that differ by the shoot age) were characterized by phanerophytes with zoochorous dispersal mode. Human perturbations maintain a quite high level of species diversity. In contrast, the abandonment of chestnut stands leads to homogeneous vegetation with decreasing diversity. One solution could be to maintain a landscape mosaic constituted of diverse chestnut stands modified by human activities (groves, cultivated or abandoned, and coppice stands). This could enhance regional plant diversity.


Castanea sativa Coppice stand Diversity index Functional trait Grove 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnaud, M.T., Bouchet, M.A. 1995L’aire écologique du châtaignier (Castanea sativa Mill.) en CévennesEcologie263340Google Scholar
  2. Arsenault, A., Bradfield, G.E. 1995Structural-compositional variation in three age-classes of temperate rainforests in southern British ColumbiaCan. J. Bot.735464Google Scholar
  3. Bonnier, G. 1990La Grande FloreFranceSuisseBelgique et pays voisinsBelin, ParisGoogle Scholar
  4. Brakenhielm, S., Lui, Q. 1998Long-term effects of clear-felling on vegetation dynamics and species diversity in boreal pine forestBiol. Conserv.7207220CrossRefGoogle Scholar
  5. DeBolòs, O., Vigo, J., Masalles, R.M., Ninot, J.M. 1993Flora Manual dels Països CatalansPortic S.A. EditionBarceloneGoogle Scholar
  6. Debussche, M., Escarré, J., Lepart, J., Houssard, C., Lavorel, S. 1996Changes in Mediterranean plant succession: old-fields revisitedJ. Veg. Sci.7519526CrossRefGoogle Scholar
  7. Díaz, S., Cabido, M. 1997Plant functional types and ecosystem function in relation to global changeJ. Veg. Sci.8463474CrossRefGoogle Scholar
  8. Díaz, S., McIntyre, S., Lavorel, S., Pausas, J. 2002Does hairiness matter in Harare? – Global comparisons of plant trait responses to disturbanceNew Phytol. 15479CrossRefGoogle Scholar
  9. Escarré, J., Houssard, C., Debussche, M., Lepart, J. 1983Evolution de la végétation et du sol après abandon cultural en région méditerranéenne: étude de successions dans les garrigues du Montpellierais (France)Acta Oecol., Oecol. Plant.4221239Google Scholar
  10. Falissard, B. 1998Comprendre et Utiliser les Statistiques dans les Sciences de la vieCollection Evaluation et StatistiqueMasson, ParisGoogle Scholar
  11. Gilliam, F.S., Turrill, N.L., Bethadams, M. 1995Herbaceous-layer and overstory species in clear-cut and mature central Appalachian hardwood forestsEcol. Appl.5947955Google Scholar
  12. Gondard, H., Deconchat, M. 2003Effects of soil surface disturbances after logging on plant species diversityAnn. Forest Sci.60725732CrossRefGoogle Scholar
  13. Gondard, H., Romane, F., Grandjanny, M., Junqing, L., Aronson, J. 2001Plant species diversity changes in abandoned chestnut (Castanea sativa) groves in southern FranceBiodivers. Conserv.10189207CrossRefGoogle Scholar
  14. Gondard, H., Jauffret, S., Aronson, J., Lavorel, S. 2003Plant functional types: a promising tool for management and restoration of degraded landsAppl. Veg. Sci.6223224Google Scholar
  15. Gounot, M. 1969Méthodes D’étude Quantitative de la VègétationMassonParisGoogle Scholar
  16. Greenacre, M.J. 1984Theory and Applications of Correspondence AnalysisAcademic PressLondonGoogle Scholar
  17. Grime, J.P., Jarvis, B.C. 1975Shade avoidance and shade tolerance in flowering plants. II. Effects of light on the germination of species of contrasted ecologyEvans, G.C.Bainbridge, R.Rackham, O. eds. Light as an Ecological Factor IIBlackwell Scientific PublicationsOxford525532Google Scholar
  18. Hadar, L., Noy-Meir, I., Perevolotsky, A. 1999The effect of shrub clearing and grazing on the composition of a Mediterranean plant community: functional groups versus speciesJ. Veg. Sci.10673682CrossRefGoogle Scholar
  19. Houssard, C., Escarré, J., Romane, F. 1980Development of species diversity in some Mediterranean plant communitiesVegetatio435972CrossRefGoogle Scholar
  20. Host, G.E., Pregitzer, K.S. 1991Ecological species groups for upland forest ecosystems of northwestern Lower MichiganForest Ecol. Manag.4387102CrossRefGoogle Scholar
  21. Kitazawa, T., Ohsawa, M. 2002Patterns of species diversity in rural herbaceous communities under different management regimes, Chibacentral JapanBiodivers. Conserv.104239249Google Scholar
  22. Lavorel, S. 1999Ecological diversity and resilience of Mediterranean vegetation to disturbanceDiversity Distribut.5313CrossRefGoogle Scholar
  23. Lavorel, S., Cramer, W. 1999Functional response of vegetation to land use and disturbanceJ. Veg. Sci.10604732CrossRefGoogle Scholar
  24. Lavorel, S., McIntyre, S., Grigulis, K. 1999Plant response to disturbance in a Mediterranean grassland: How many functional groups?J. Veg. Sci.10661672CrossRefGoogle Scholar
  25. Lavorel, S., McIntyre, S., Landsberg, J., Forbes, T.D.A. 1997Plant functional classification: from general groups to specific groups based on response to disturbanceTree12474478Google Scholar
  26. Magurran, A.E. 1988Ecological Diversity and its MeasurementsCroom HelmLondonGoogle Scholar
  27. McIntyre, S., Lavorel, S. 2001Livestock grazing in sub-tropical pastures: steps in the analysis of attribute response and plant functional typesJ. Ecol.89209226CrossRefGoogle Scholar
  28. McIntyre, S., Lavorel, S., Landsberg, J., Forbes, T.D.A. 1999Disturbance response in vegetation-towards a global perspective on functional traitsJ. Veg. Sci.10621630CrossRefGoogle Scholar
  29. McIntyre, S., Lavorel, S., Tremont, R.M. 1995Plant life history attributes: their relationships to disturbance response in herbaceous vegetationJ. Ecol.833144Google Scholar
  30. Mitchell, R.J., Marrs, R.H., Auld, M.H.D. 1998A comparison study of the seedbanks of heathland and succession habitats in DorsetSouthern EnglandJ. Ecol.86588596CrossRefGoogle Scholar
  31. Mitchell, R.J., Marrs, R.H., Le Duc, M.G., Auld, M.H.D. 1997A study of succession on lowland heaths in DorsetSouthern England: changes in vegetation and soil propertiesJ. Appl. Ecol.614261444Google Scholar
  32. Molinier R. and Müller P. 1938. La Dissémination des Espèces Végétales. Lesot A. (ed.), Paris.Google Scholar
  33. Pielou, R.H. 1975Ecological DiversityA Wiley-Interscience PublicationNew YorkGoogle Scholar
  34. Pignatti S. 1982. Flora d’Italia. Edagricole (ed.), Bologne, 3 volumes, p. 2302.Google Scholar
  35. Pillar, V.D. 1999On the identification of optimal plant functional typesJ. Veg. Sci.10631640CrossRefGoogle Scholar
  36. Pregitzer, K.S., Barnes, B.V. 1982The use of ground flora to indicate edaphic factors in upland ecosystems of the McCormick experimental forestUpper MichiganCan. J. Forest Res.12661672Google Scholar
  37. Romane, F., Bacilieri, R., Bran, D., Bouchet, M.A. 1992Natural degenerate Mediterranean forests: Which future? The examples of the holm oak (Quercus ilex.) and chestnut (Castanea sativa Mill.) coppice standsTeller, A.Mathy, P.Jeffers, J.N.R. eds. Responses of Forest Ecosystems to Environmental ChangesElsevier Applied ScienceLondon and New York374380Google Scholar
  38. Roux, M. 1985Algorithmes de ClassificationMassonParisGoogle Scholar
  39. Rubio, A., Escudero, A. 2003Clear-cut effects on chestnut forest soils under stressful conditions: lengthening of time-rotationForest Ecol. Manag.183195204CrossRefGoogle Scholar
  40. Rubio, A., Gavilán, R., Escudero, A. 1999Are soil characteristics and understorey composition controlled by forest management?Forest Ecol. Manag.113191200CrossRefGoogle Scholar
  41. Strong, W.L., Bluth, D.J., LaRoi, G.H., Corns, I.G.W. 1991Forest understorey plants as predictors of lodgepole pine and white spruce site quality in west-central AlbertaCan. J. Forest Res.2116751683Google Scholar
  42. Tatoni, T., Roche, P. 1994Comparison of old-field and forest revegetation dynamics in ProvenceJ. Veg. Sci.5295302CrossRefGoogle Scholar
  43. terBraak, C.J.F. 1987The analysis of vegetation-environment relationships by canonical correspondence analysisVegetatio696977CrossRefGoogle Scholar
  44. Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M. and Webb D.A. 1964–1980. Flora Europea. Cambrige University Press.Google Scholar
  45. Pijl, L. 1982Principles of Dispersal in Higher PlantsSpringerBerlin, Heidelberg and New YorkGoogle Scholar
  46. Yorks, T.E., Dabydeen, S. 1999Seasonal and successional understory vascular plant diversity in second growth hardwood clearcuts of western MarylandUSAForest Ecol. Manag.119217230CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Hélène Gondard
    • 1
    Email author
  • François Romane
    • 1
  • Ignacio Santa Regina
    • 2
  • Salvatore Leonardi
    • 3
  1. 1.CEFE (UMR 5175)Montpellier cedex 5France
  2. 2.Instituto de Recursos Naturales y Agrobiologia de SalamancaSalamancaSpain
  3. 3.Dipartimento di Metodologie Fisiche e Chimiche per l’Ingegneria, Facoltà di IngegneriaUniversità di CataniaCataniaItaly

Personalised recommendations