Biodiversity & Conservation

, Volume 14, Issue 12, pp 2913–2947 | Cite as

An ED-based Protocol for Optimal Sampling of Biodiversity

Article

Abstract

While conservation planning requires good biodiversity data, our knowledge of most living groups is scarce and patchy even in well-sampled regions. Therefore, we need methodologies for rapid assessments for particular groups and regions. Maps of any biodiversity surrogate can be interpolated from even a few well-known sites, but such places are usually lacking. We therefore propose a protocol for designing field surveys to obtain good coverage of pattern variations of biodiversity in a given region. To represent biodiversity patterns comprehensively, we use a rule step site-allocation procedure, partially based on Faith and Walker's ED criterion that takes environmental and spatial variation into account, together with other criteria such as survey costs. A preliminary assessment of the adequacy of this site sampling strategy is made. Then a set of complementary sites is selected for further sampling. Using the ED criterion, during the stepwise process a p-median analysis is applied both to an environmental distance matrix and to a spatial distance matrix, to maximize the amount of variation covered by our survey planning. This rule-set allocation procedure is integrated into a continuous sampling design protocol directed to ensure we can sample all biodiversity of a region. This protocol requires the gathering of both biological and environmental information, an assessment of previously available information, the choice of sampling methods and dates, and a continuous assessment of the success of the survey being carried out. An example of the application of this protocol to the survey design of dung beetle (Coleoptera, Scarabaeoidea) diversity in the Comunidad de Madrid (Spain) is included.

Keywords

Biodiversity patterns Diversity sampling protocol Dung beetles ED criterion p-median Allocation procedure Survey costs Weighted environmental ordination 

Abbreviations

CM

(Comunidad de Madrid)

DEM

(Digital Elevation Model)

ED

(complementarity-based site allocation method developed by Faith and Walker, 1994, 1996)

edi

(Environmental distances)

GBIF

(Global Biodiversity Information Facility)

GIS

(Geographic Information System)

GLM

(General Linear Models)

PCA

(Principal Components Analysis)

PCoA

(Principal Coordinates Analysis)

sdi

(Spatial Distances)

TU

(Territorial Unit)

UTM

(Universal Transverse Mercator)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araújo, M.B., Humphries, C.J., Densham, P.J., Lampinen, R., Hagemeijer, W.J.M., Mitchell-Jones, A.J., Gascet, J.P. 2001Would environmental diversity be a good surrogate for species diversity?Ecography24103110CrossRefGoogle Scholar
  2. Araújo, M.B., Densham, P.J., Humphries, C.J. 2003Predicting species diversity with ED: the quest for evidenceEcography26380383CrossRefGoogle Scholar
  3. Austin, M.P. 1987Models for the analysis of species response to environmental gradientsVegetation693545CrossRefGoogle Scholar
  4. Austin, M.P. 1998An ecological perspective on biodiversity investigations: examples from Australian eucalypt forestsAnn. Missouri Bot. Garden85217Google Scholar
  5. Austin, M.P., Heyligers, P.C. 1989Vegetation survey design for conservation: gradsect sampling of forests in north-eastern New South WalesBiol. Conserv.501332CrossRefGoogle Scholar
  6. Austin, M.P., Heyligers, P.C. 1991

    New approach to vegetation survey design: gradsect sampling

    Margules, C.R.Austin, M.P. eds. Nature Conservation: Cost Effective Biological Surveys and Data AnalysisCSIROAustralia3136
    Google Scholar
  7. Barnett, D.T., Stohlgren, T.J. 2003A nested-intensity design for surveying plant diversityBiodiver. Conserv.12255278CrossRefGoogle Scholar
  8. Bascompte, J., Jordano, P., Melián, C.J., Olesen, J.M. 2003The nested assembly of plant–animal mutualistic networksProceedings of the National Academy of Sciences of the United States of America10093839387CrossRefPubMedGoogle Scholar
  9. Belbin, L. 1993Environmental representativeness: regional partitioning and reserve selectionBiol. Conserv.66223230CrossRefGoogle Scholar
  10. Bisby, F.A. 2000aThe quiet revolution: biodiversity informatics and the internetScience28923092312CrossRefGoogle Scholar
  11. Bisby, F.A. 2000bResponse to Databases tailored for biodiversity conservationScience2902074Google Scholar
  12. Bojorquez-Tapia, L.A., Azuara, I., Escurra, E., Flores-Villela, O. 1996Identifying conservation priorities in México through geographic information systems and modellingEcol. Appl.5215231Google Scholar
  13. Borcard, D., Legendre, P., Drapeau, P. 1992Partialling out the spatial component of ecological variationEcology7310451055Google Scholar
  14. Bunce, R.G.H., Barr, C.J., Clarke, R.T., Howard, D.C., Lane, A.M.J. 1996Land classification for strategic ecological surveyJ. Environ. Manag.473760CrossRefGoogle Scholar
  15. Casgrain P. and Legendre P. 2001. The R Package for Multivariate and Spatial Analysis, version 4.0d3.. Dé partement de Sciences Biologiques, Université de Montré al Available at http:// www.fas.umontreal.ca/BIOL/legendre/.Google Scholar
  16. Christen, J.A., Nakamura, M. 2003Sequential stopping rules for species accumulationJ. Agric. Biol. Environ. Stat.8184195CrossRefGoogle Scholar
  17. Church, R.L. 2002Geographical information systems and location scienceComput. Operation Res.29541562CrossRefGoogle Scholar
  18. Church R.L. and Sorensen P. 1994. Integrating Normative Location Models into GIS: Problems and Prospects with the p-median Model. Technical ReportNGCIAAvailable at http://www.ncgia.ucsb.edu/Publications/. Google Scholar
  19. Clark Labs 2000a. Global Change Data Archive Vol. 3. 1 km Global Elevation Model. CD-Rom. Clark University.Google Scholar
  20. Clark Labs 2000b. Idrisi 32.2. GIS software package, Clark University, CD-Rom.Google Scholar
  21. Cochran, W.G. 1977Sampling Techniques, 3rd ednWiley and SonsNew YorkGoogle Scholar
  22. Colwell, R.K., Coddington, J.A. 1994Estimating terrestrial biodiversity through extrapolationPhilos. Trans. R. Soc. Lond. B345101118Google Scholar
  23. Colwell R.K. 2000. EstimateS 6.0b1.. Computer program and manual available at http:// viceroy.eeb.conn.edu/Estimates6/. Google Scholar
  24. Davis, F.W., Goetz, S. 1990Modeling vegetation–environment association using digital satellite and terrain dataLandscape Ecol.46980Google Scholar
  25. Dobson, A. 1999An Introduction to Generalized Linear ModelsChapman and Hall/CRCLondonGoogle Scholar
  26. Edwards, J.L., Lane, M.A., Nielsen, E.S. 2000aInteroperability of biodiversity databases: biodiversity information on every desktopScience28923122314CrossRefGoogle Scholar
  27. Edwards, J.L., Lane, M.A., Nielsen, E.S. 2000bResponse to Databases tailored for biodiversity conservationScience29020732074Google Scholar
  28. European Environment Agency 1996. Natural Resources CD-Rom. European Environment Agency.Google Scholar
  29. Fagan, W.F., Kareiva, P.M. 1997Using compiled species list to make biodiversity comparisons among regions: a test case using Oregon butterfliesBiol. Conserv.80249259CrossRefGoogle Scholar
  30. Faith D.P. 2001a. Overlap of species richness and development-opportunity does not imply con- flict. Science Online 293: 1591a, Available at http://www.sciencemag.org/cgi/eletters/293/5535/ 1591.Google Scholar
  31. Faith D.P. 2001b. Cost-effective biodiversity planning. Science Online 293: 2207a, Available at http://www.sciencemag.org/cgi/eletters/293/5538/2207.Google Scholar
  32. Faith, D.P. 2003Environmental diversity (ED) as a surrogate information for species-level biodiversityEcography26374379CrossRefGoogle Scholar
  33. Faith, D.P., Walker, P.A. 1994DIVERSITY: A Software Package for Sampling Phylogenetical and Environmental Diversity. Reference and User's Guide. v. 2.1.CSIRO Division of Wildlife and EcologyCanberraAvailable at http://www.amonline.net.au/systematics/staff_faith.htm.Google Scholar
  34. Faith, D.P., Walker, P.A. 1996Environmental diversity: on the best-possible use of surrogate data for assessing the relative biodiversity set of areasBiodiver. Conserv.5399415CrossRefGoogle Scholar
  35. Faith D.P. and Ferrier S. 2002. Linking beta-diversity, environmental variation, and biodiversity assessment. Science Online 295, Available at http://www.sciencemag.org/cgi/eletters/295/5555/ 636#504.Google Scholar
  36. Faith, D.P., Walker, P.A., Ive, J.R., Belbin, L. 1996Integrating conservation and forestry production: exploring trade-offs between biodiversity and production in regional land-use assessmentForest Ecol. Manag.85251260CrossRefGoogle Scholar
  37. Ferrier, S. 2002Mapping spatial pattern in biodiversity for regional conservation planning: Where to from here?Syst. Biol.51331363CrossRefPubMedGoogle Scholar
  38. Ferrier S. and Watson G. 1997. An evaluation of the effectiveness of environmental surrogates and modelling techniques in predicting the distribution of biological diversity. Environment Australia.Google Scholar
  39. Ferrier, S., Watson, G., Pearce, J., Drielsma, M. 2002aExtended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modellingBiodiver. Conserv.1122752307CrossRefGoogle Scholar
  40. Ferrier, S., Drielsma, M., Manion, G., Watson, G. 2002bExtended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. II. Community-level modellingBiodiver. Conserv.1123092338CrossRefGoogle Scholar
  41. Flather, C.H. 1996Fitting species-accumulation functions and assessing regional land use impacts on avian diversityJ. Biogeogr.23155168CrossRefGoogle Scholar
  42. Fortin, M.J. 1999Effects of sampling unit resolution on the estimation of spatial autocorrelationÉcoscience6636641Google Scholar
  43. Frontier, S. 1976Étude de la décroissance des valeurs propres dans un analyse en composantes principales: comparaison avec le modèle du bâton briséJ. Exp. Mar. Biol. Ecol.14217224CrossRefGoogle Scholar
  44. García Hernández, E., Bosque Sendra, J. 2001Bases de datos cartográficas de cobertura global accesibles 'on-line'Geofocus (Recursos)1510Google Scholar
  45. Gaston, K.J. 1996

    Species richness: measure and measurement

    Gaston, K.J. eds. Biodiversity. A Biology of Numbers and DifferenceBlackwell ScienceOxford77113
    Google Scholar
  46. Gillison, A.N., Brewer, K.R.W. 1985The use of gradient directed transects or gradsects in natural resource surveysJ. Environ. Manag.20103127Google Scholar
  47. Gotelli, N.J., Colwell, R.K. 2001Quantifying biodiversity: procedures and pitfalls in measurement and comparison of species richnessEcol. Lett.4379391CrossRefGoogle Scholar
  48. Gower, J.C. 1966Some distance properties of latent root and vector methods used in multivariate analysisBiometrika53325338Google Scholar
  49. Gower, J.C. 1971A general coefficient of similarity and some of its propertiesBiometrics27857871Google Scholar
  50. Haila, Y., Margules, C.R. 1996Survey research in conservation biologyEcography19323331Google Scholar
  51. Hirzel, A., Guisan, A. 2002Which is the optimal sampling strategy for habitat suitability modellingEcol. Model.157331341CrossRefGoogle Scholar
  52. Hortal, J., Lobo, J.M. 2001

    A preliminary methodological approach to model the spatial distribution of biodiversity attributes

    Mateu, J.Montes, F. eds. Spatio-temporal Modelling of Environmental Processes: Proceedings of the 1st Spanish Workshop of Spatio-temporal Modelling of Environmental ProcessesPublicacions de la Universitat Jaume I, Collecció “Treballs dȁ9Informàtica I Tecnologia” 10Castelló de la Plana211239
    Google Scholar
  53. Hortal, J., Lobo, J.M., Martín-Piera, F. 2001Forecasting insect species richness scores in poorly surveyed territories: the case of the Portuguese dung beetles (Col. Scarabaeinae)Biodiver. Conserv.1013431367CrossRefGoogle Scholar
  54. Hortal, J., Lobo, J.M., Martín-Piera, F. 2003Una estrategia para obtener regionalizaciones bióticas fiables a partir de datos incompletos: el caso de los Escarabeidos (Coleoptera) Ibérico-BalearesGraellsia59331343Google Scholar
  55. Hortal, J., Garcia-Pereira, P., García-Barros, E. 2004Butterfly species richness in mainland Portugal: Predictive models of geographic distribution patternsEcography276882CrossRefGoogle Scholar
  56. ITGE1988Atlas Geocientífico y del Medio Natural de la Comunidad de MadridInstituto Tecnológico GeoMinero de EspañaSerie Medio AmbienteMadridGoogle Scholar
  57. Iverson, L.R., Prasad, A.M. 1998Estimating regional plant biodiversity with GIS modellingDiversity and Distributions44961CrossRefGoogle Scholar
  58. Jiménez-Valverde, A., Hortal, J. 2003Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicosRev. Iber. Aracnol8151161Google Scholar
  59. Jimé nez-Valverde A. and Lobo J.M. 2004. Determining a combined sampling procedure for a reliable estimation of Araneidae and Thomisidae assemblages (Arachnida: Aranaeae). J. Arachnol., in press.Google Scholar
  60. Jordano, P., Bascompte, J., Olesen, J.M. 2003Invariant properties in coevolutionary networks of plant-animal interactionsEcol. Lett.66981CrossRefGoogle Scholar
  61. Kish, L. 1965Survey SamplingWiley and SonsNew YorkGoogle Scholar
  62. Legendre, P., Legendre, L. 1998Numerical Ecology, 2nd ednElsevierAmsterdamGoogle Scholar
  63. Legendre, P., Dale, M.R.T., Fortin, M.J., Gurevitch, J., Hohn, M., Myers, D. 2002The consequences of spatial structure for the design and analysis of ecological field surveysEcography25601615CrossRefGoogle Scholar
  64. León Cortés, J.L., Soberón-Mainero, J., Llorente-Bousquets, J. 1998Assesing completeness of Mexican sphinx moth inventories through species accumulation functionsDivers. Distribut.43744Google Scholar
  65. Lingoes, J.C. 1971Some boundary conditions for a monotone analysis of symmetric matricesPsychometrika36195203Google Scholar
  66. Lobo, J.M., Martín-Piera, F. 1993Análisis comparado de las comunidades primaverales de escarabeidos coprófagos (Col., Scarabaeoidea) del archipiélago balearEcologia Mediterranea3/42941Google Scholar
  67. Lobo, J.M., Martín-Piera, F. 2002Searching for a predictive model for Iberian dung beetle species richness based on spatial and environmental variablesConserv. Biol.16158173CrossRefGoogle Scholar
  68. Lobo, J.M., Martín-Piera, F., Veiga, C.M. 1988Las trampas pitfall con cebosus posibilidades en el estudio de las comunidades coprófagas de Scarabaeoidea (Col.) I. Características determinantes de su capacidad de capturaRevue d'Ecologie et de Biologie du Sol2577100Google Scholar
  69. Lobo, J.M., Sanmartín, I., Martín-Piera, F. 1997Diversity and Spatial Turnover of dung beetle (Coleoptera: Scarabaeoidea) communities in a protected area of South Europe (Doñana National Park, HuelvaSpain)Elytron117188Google Scholar
  70. Lobo, J.M., Lumaret, J.P., Jay-Robert, P. 1998Sampling dung beetles in the French Mediterranean area: effects of abiotic factors and farm practicesPedobiologia42252266Google Scholar
  71. Lobo, J.M., Castro, I., Moreno, J.C. 2001Spatial and environmental determinants of vascular plant species richness distribution in the Iberian Peninsula and Balearic IslandsBiol. J. Linn. Soc.73233253CrossRefGoogle Scholar
  72. Lobo, J.M., Lumaret, J.P., Jay-Robert, P. 2002Modelling the species richness distribution of French dung beetles (ColeopteraScarabaeidae) and delimiting the predictive capacity of different groups of explanatory variablesGlobal Ecol. Biogeogr.11265277CrossRefGoogle Scholar
  73. López-Colón, J.I. 2000

    Familia Geotrupidae

    Martín-Piera, F.López-Colón, J.I. eds. Fauna Ibérica 14. Scarabaeoidea IColeopteraMuseo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones CientíficasMadrid105183
    Google Scholar
  74. Loreau, M., Mouquet, N., Gonzalez, A. 2003Biodiversity as spatial insurance in heterogeneous landscapesProceedings of the National Academy of Sciences of the United States of America1001276512770CrossRefPubMedGoogle Scholar
  75. Lumaret, J.P. 1980Analyse des communautés de scarabéides coprophages dans le maquis Corse et étude de leur role dans l'utilisation des excrémentsEcologia Mediterranea55158Google Scholar
  76. Lumaret, J.P., Kirk, A.A. 1987Ecology of dung beetles in the French Mediterranean region (ColeopteraScarabaeidae)Acta Zool. Mexicana24155Google Scholar
  77. Margules, C.R., Pressey, R.L. 2000Systematic conservation planningNature405243253CrossRefPubMedGoogle Scholar
  78. Margules, C.R., Nicholls, A.O., Austin, M.P. 1987Diversity of Eucalyptus species predicted by a multi-variable environment gradientOecologia71229232CrossRefGoogle Scholar
  79. Martín-Piera, F. 2000

    Familia Scarabaeidae

    Martín-Piera, F.López-Colón, J.I. eds. Fauna Ibérica 14. ColeopteraScarabaeoidea IMuseo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones CientíficasMadrid205432
    Google Scholar
  80. Martín-Piera, F., Veiga, C.M., Lobo, J.M. 1992Ecology and biogeography of dung-beetle communities (ColeopteraScarabaeoidea) in an Iberian mountain rangeJ. Biogeogr.19677691Google Scholar
  81. McCullagh, P., Nelder, J.A. 1989Generalized Linear Models, 2nd edn.Chapman and HallLondonGoogle Scholar
  82. Ministerio de Agricultura and Pesca y Alimentación1986Atlas Agroclimático Nacional de España. 2a EdDirección General de la Producción AgrariaSubdirección General de la Producción VegetalMadridGoogle Scholar
  83. Missios P.C. 1998. Optimal sampling intensity in biodiversity prospecting and the financing of conservation. Annual Conference of the Canadian Economics Association, Available at http:// www.feem.it/gnee/papers.html.Google Scholar
  84. Moreno, C.E., Halffter, G. 2000Assessing the completeness of bat biodiversity inventories using species accumulation curvesJ. Appl. Ecol.37149158CrossRefGoogle Scholar
  85. Moreno, C.E., Halffter, G. 2001On the measure of sampling effort used in species accumulation curvesJ. Appl. Ecol.38487490CrossRefGoogle Scholar
  86. Neave, H.M., Cunningham, R.B., Norton, T.W., Nix, H.A. 1997Preliminary evaluation of sampling strategies to estimate the species richness of diurnal, terrestrial birds using Monte Carlo simulationEcol. Model.951727CrossRefGoogle Scholar
  87. Neldner, V.J., Crossley, D.C., Cofinas, M. 1995Using Geographic Information Systems (GIS) to determine the adequacy of sampling in vegetation surveysBiol. Conserv.73117CrossRefGoogle Scholar
  88. Pereira, J.M.C., Itami, R.M. 1991GIS-based habitat modelling using logistic multiple regression: a study of the Mt. Graham Red SquirrelPhotogramm. Eng. Rem. Sens.5714751486Google Scholar
  89. Pressey, R.L., Nicholls, A.O. 1989aApplication of a numerical algorithm to the selection of reserves in semi-arid New South WalesBiol. Conserv.50263278CrossRefGoogle Scholar
  90. Pressey, R.L., Nicholls, A.O. 1989bEfficiency in conservation evaluation: scoring versus iterative approachesBiol. Conserv.50199218CrossRefGoogle Scholar
  91. Ricklefs, R.E. 2004A crompehensive framework for global patterns in biodiversityEcol. Lett.7115CrossRefGoogle Scholar
  92. Ricklefs, R.E., Schluter, D. 1993

    Species diversity: regional and historical influences

    Ricklefs, R.E.Schluter, D. eds. Species Diversity in Ecological CommunitiesThe University of Chicago PressChicago350364
    Google Scholar
  93. Rivas-Martínez, S. 1987Memoria del Mapa de las Series de Vegetación de EspañaICONAMadridGoogle Scholar
  94. Rodrigues, A.S.L., Gaston, K.J. 2002Optimisation in reserve selection procedures - why not?Biol. Conserv.107123129CrossRefGoogle Scholar
  95. Servicio Cartográfico de la Comunidad de Madrid1996Mapa de la Comunidad de Madrid. Escala 1:200.000Consejería de Ordenación Territorial, Comunidad de MadridMadridGoogle Scholar
  96. Smith, A.T., Boitani, L., Bibby, C., Brackett, D., Corsi, F., da Fonseca, G.A.B., Gascon, C., Gimenez Dixon, M., Hilton-Taylor, C., Mace, G., Mittermeier, R.A., Rabinovich, J., Richardson, B.J., Rylands, A., Stein, B., Stuart, S., Thomsen, J., Wilson, C. 2000Databases tailored for biodiversity conservationScience2902073CrossRefPubMedGoogle Scholar
  97. Soberón, J., Llorente, J. 1993The use of species accumulation functions for the prediction of species richnessConserv. Biol.7480488CrossRefGoogle Scholar
  98. Southwood, T.R.E., Henderson, P.A. 2000Ecological Methods, 3rd ednBlackwell ScienceOxfordGoogle Scholar
  99. StatSoft Inc.1999STATISTICA for Windows. Computer program manualStatSoft Inc.TulsaOKGoogle Scholar
  100. Tilman, D., Wedin, D., Knops, J. 1996Productivity and sustainability influenced by biodiversity in grassland ecosystemsNature379718720CrossRefGoogle Scholar
  101. Tilman, D., Naeem, S., Knops, J., Reich, P., Siemann, E., Wedin, D., Ritchie, M., Lawton, J. 1997Biodiversity and ecosystem propertiesScience2781865CrossRefGoogle Scholar
  102. Veiga C.M. 2000. Los Aphodiinae (ColeopteraAphodiidae) Ibéricos. Unpublished PhD thesis, Universidad Complutense de MadridFacultad de Ciencias Biológicas, Dpto. de Biología Animal I. Google Scholar
  103. Veiga, C.M., Lobo, J.M., Martín-Piera, F. 1989Las trampas pitfall con cebosus posibilidades en el estudio de las comunidades coprófagas de Scarabaeoidea (Col.) II. Análisis de efectividadRevue d'Ecologie et de Biologie du Sol2691109Google Scholar
  104. Wessels, K.J., van Jaarsveld, A.S., Grimbeek, J.D., Linde, M.J. 1998An evaluation of the gradsect biological survey methodBiodiver. Conserv.710931121CrossRefGoogle Scholar
  105. Whittaker, R.J., Willis, K.J., Field, R. 2001Scale and species richness: towards a general, hierarchical theory of species diversityJ. Biogeogr.28453470CrossRefGoogle Scholar
  106. Willott, S.J. 2001Species accumulation curves and the measure of sampling effortJ. Appl. Ecol.38484486CrossRefGoogle Scholar
  107. Yachi, S., Loreau, M. 1999Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesisProc. Nat. Acad. Sci. USA9614631468CrossRefPubMedGoogle Scholar
  108. Zimmermann, N.E., Kienast, F. 1999Predictive mapping of alpine grasslands in Switzerland: Species versus community approachJ. Veg. Sci.10469482Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Departamento de Biodiversidad y Biología Evolutiva, MuseoNacional de Ciencias NaturalesMadridSpain

Personalised recommendations