WGEUROBUS – Working Group “Towards a EURopean OBservatory of the non-indigenous calanoid copepod Pseudodiaptomus marinUS

  • M. UttieriEmail author
  • L. Aguzzi
  • R. Aiese Cigliano
  • A. Amato
  • N. Bojanić
  • M. Brunetta
  • E. Camatti
  • Y. Carotenuto
  • T. Damjanović
  • F. Delpy
  • A. de Olazabal
  • I. Di Capua
  • J. Falcão
  • M. L. Fernandez de Puelles
  • G. Foti
  • O. Garbazey
  • A. Goruppi
  • A. Gubanova
  • E. Hubareva
  • A. Iriarte
  • A. Khanaychenko
  • D. Lučić
  • S. C. Marques
  • M. G. Mazzocchi
  • J. Mikuš
  • R. Minutoli
  • M. Pagano
  • M. Pansera
  • I. Percopo
  • A. L. Primo
  • L. Svetlichny
  • S. Rožić
  • V. Tirelli
  • I. Uriarte
  • O. Vidjak
  • F. Villate
  • M. Wootton
  • G. Zagami
  • S. Zervoudaki
Perspectives and paradigms


Since 2007, the non-indigenous calanoid copepod Pseudodiaptomus marinus Sato, 1913 has been increasingly recorded in numerous European sites, spreading at an unexpectedly fast pace over a short time-span. This species presents specific biological and behavioural traits which make it of particular interest for ecological and applied research topics. On 29–30 January 2018, 29 scientists from nine European Countries established the EUROBUS (Towards a EURopean OBservatory of the non-indigenous calanoid copepod Pseudodiaptomus marinUS) Working Group (WG). This WG aimed at creating a European network of institutions and researchers working on the various aspects of the biology and ecology of P. marinus, with an open forum where sharing experience and know-how among WG participants. This brought to an updated distribution map of P. marinus in European waters, as well as to the identification of priority research lines and potential joint initiatives under the WGEUROBUS umbrella. This contribution, stemming from the experts participating at the WG, represents the manifesto of the current and future initiatives developed within WGEUROBUS.


Pseudodiaptomus marinus European seas Distribution Ecology Molecular approaches 



The authors thank the WGEUROBUS of the International Council for the Exploration of the Sea (ICES) for facilitating this research. The workshop held in Naples in January 2018 was financially and logistically supported by SZN (Stazione Zoologica Anton Dohrn, Italy); financial support was also provided by SIBM (Italian Society of Marine Biology; Italy) and CoNISMa (National Inter-University Consortium for Marine Sciences; Italy). WGEUROBUS activities were also endorsed by SAHFOS (Sir Alister Hardy Foundation for Ocean Science; United Kingdom), WAC (World Association of Copepodologists; USA) and MOTax Service at SZN. MU was supported by a SZN internal Grant; MU thanks G. Boxshall for sharing information on benthic copepods morphology and Mark Pottek for the design of the WGEUROBUS cartoon. MW and MB thank the owners and crews of the ships that tow the CPRs on a voluntary basis and all the past and present CPR analysts who have contributed to the CPR dataset. The study realized in Berre Lagoon (France) was supported by the GELAMED project (MEEDDM—Ministere de l’Ecologie, de l’Energie, du Développement Durable et de la Mer, Programme 189—«Recherche» 18902 C) and Total Foundation (P.I.: D. Bonnet) and by a PhD fellowship for FD from the Provence-Alpes-Côte d’Azur Region. IMBR researchers (AG, OG, EH and AK) were supported by RAS projects Nos. AAAA-A18-118021350003-6, AAAA-A18-118021490093-4 and AAAA-A18-118020790229-7. AG, OG and EH would like to express their sincere gratitude to E. Popova for assistance in sample analysis. The collection of part of the samples from the Western Adriatic has been funded by the MEDIAS GSA 17 research project in the framework of the EC—MIPAAF Italian National Data Collection Program and by the Flagship Project RITMARE—The Italian Research for the Sea—coordinated by the Italian National Research Council and funded by the Italian Ministry of Education, University and Research. VT, AdO and AG thank D. Borme, the crew members of the R/V “G. Dallaporta” and the whole OGS staff for the help in the collections of samples, T. Juretić for the assistance in sample analysis, and colleagues F. Grilli (ISMAR-CNR), M. Kralj (OGS) and M. Giani (OGS) for temperature and salinity data. EC, AdO, IDC, AG, MGM, MP and VT are grateful to LTER-Italy (Italian Long-Term Ecological Research Network) for their support. While it is not possible to mention all the individuals who have contributed to the maintenance of LTER activities (researchers, technicians, and students), these authors wish to acknowledge and emphasize that all of them are vital contributors to the LTER programme and to its collaborative and collective nature. SCM and JF thank the support of Fundação para a Ciência e Tecnologia (FCT), through the strategic project UID/MAR/04292/2019 Granted to MARE and the Grant awarded to SCM (SFRH/BPD/110400/2015), ALP (SFRH/BPD/91030/2012) and JF (SFRH/BD/140876/2018). OV is indebted to Croatian Environmental Agency (HAOP) for the financial support in attending WGEUROBUS workshop. OV, NB, TD and SR thank the “Croatian waters” company and G. Kušpilić, the coordinator of WFD monitoring of coastal and transitional waters, for the possibility of collecting zooplankton samples during the cruises. OV, NB, TD and SR also thank the colleagues B. Grbec and D. Udovičić (Laboratory of Physics, IOF Split) for temperature and salinity data, T. Šegvić-Bubić and I. Mladineo (Laboratory for Aquaculture, IOF Split) for providing help with molecular analysis and crew and technicians of R/V “BIOS DVA” for helping during sampling procedures. FV, AI and IU thank the financial support of the Spanish Ministry of Economy and Competitiveness (CGL2013-47607-R), the Basque Government (IT-778-13 GIC12/03 and IT354-10 GIC10/168) and the University of the Basque Country (UFI11/37) to carry out the monitoring program of the estuaries of Bilbao and Urdaibai, whose data are used for this work. FV, AI and IU also want to thank M. Grande and Z. Barroeta for helping with zooplankton identification. The Corresponding Editor and two anonymous Reviewers gave generously of their time, improving a previous version of the manuscript. The authors also thank: S. Birchenough for insightful comments on an earlier version of the manuscript; M. Hure, N. Makhlouf, M. Nejib Daly Yahia and F. Cicero for sharing unpublished data on P. marinus distribution.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10530_2019_2174_MOESM1_ESM.pdf (764 kb)
Supplementary material 1 (PDF 764 kb)


  1. Abad D et al (2016) Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Mar Biol 163:149. CrossRefGoogle Scholar
  2. Adams JB, Bollens SM, Bishop JG (2015) Predation on the invasive copepod, Pseudodiaptomus forbesi, and native zooplankton in the lower Columbia River: an experimental approach to quantify differences in prey-specific feeding rates. PLoS ONE 10:e0144095. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Albaina A, Uriarte I, Aguirre M, Abad D, Iriarte A, Villate F, Estonba A (2016) Insights on the origin of invasive copepods colonizing Basque estuaries; a DNA barcoding approach. Mar Biodivers Rec 9:51. CrossRefGoogle Scholar
  4. Amato A, Carotenuto Y (2018) Planktonic calanoids embark on the ‘omics’ era. In: Uttieri M (ed) Trends in copepod studies—distribution, biology and ecology. Nova Science Publishers Inc., New York, pp 287–314Google Scholar
  5. Arias AH, Souissi A, Roussin M, Ouddane B, Souissi S (2016) Bioaccumulation of PAHs in marine zooplankton: an experimental study in the copepod Pseudodiaptomus marinus. Environ Earth Sci 75:691. CrossRefGoogle Scholar
  6. Baviera C, Zagami G, Crescenti N (2007) Pseudocyclops costanzoi, a new species (Copepoda, Calanoida, Pseudocyclopidae) from the Mediterranean Sea, Faro Lake, Sicily. Crustaceana 80:569–576. CrossRefGoogle Scholar
  7. Belmonte G (2018) Calanoida (Crustacea: Copepoda) of the Italian fauna: a review. Eur Zool J 85:274–290. CrossRefGoogle Scholar
  8. Blanda E et al (2015) Trophic interactions and productivity of copepods as live feed from tropical Taiwanese outdoor aquaculture ponds. Aquaculture 445:11–21. CrossRefGoogle Scholar
  9. Bollens SM, Breckenridge JK, Cordell JR, Rollwagen-Bollens G, Kalata O (2012) Invasive copepods in the Lower Columbia River Estuary: seasonal abundance, co-occurrence and potential competition with native copepods. Aquat Invasions 7:101–109CrossRefGoogle Scholar
  10. Bollens SM, Breckenridge JK, Cordell JR, Simenstad CA, Kalata O (2014) Zooplankton of tidal marsh channels in relation to enrivonmental variables in the upper San Francisco Estuary. Aquat Biol 21:205–219. CrossRefGoogle Scholar
  11. Boxshall GA (2007) Alien species in European coastal waters. Aquat Invasions 2:279–280CrossRefGoogle Scholar
  12. Bradford-Grieve JM (2002) Colonisation of the pelagic realm by calanoid copepods. Hydrobiologia 485:223–244. CrossRefGoogle Scholar
  13. Briggs JC (2012) Marine species invasions in estuaries and harbors. Mar Ecol Prog Ser 449:297–302CrossRefGoogle Scholar
  14. Bron JE, Frisch D, Goetze E, Johnson SC, Lee CE, Wyngaard GA (2011) Observing copepods through a genomic lens. Front Zool 8:22. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brugnano C, Celona A, Zagami G (2010) A new species of Pseudocyclops (Copepoda: Calanoida) from Lake Faro (Central Mediterranean Sea). Vie Milieu 60:1–7Google Scholar
  16. Bryant ME, Arnold JD (2007) Diets of age-0 striped bass in the San Francisco estuary, 1973–2002. Calif Fish Game 93:1–22Google Scholar
  17. Brylinski JM, Antajan E, Raud T, Vincent D (2012) First record of the Asian copepod Pseudodiaptomus marinus Sato, 1913 (Copepoda: Calanoida: Pseudodiaptomidae) in the southern bight of the North Sea along the coast of France. Aquat Invasions 7:577–584CrossRefGoogle Scholar
  18. Buttino I et al (2012) Experimental cultivation of the Mediterranean calanoid copepods Temora stylifera and Centropages typicus in a pilot re-circulating system. Aquac Res 43:247–259. CrossRefGoogle Scholar
  19. Cabrini M et al (2019) Potential transfer of aquatic organisms via ballast water with a particular focus on harmful and non-indigenous species: a survey from Adriatic ports. Mar Poll Bull 147:16–35. CrossRefGoogle Scholar
  20. Carlton JT, Ruiz GM (2005) Vector science and integrated vector management in bioinvasion ecology: conceptual framework. In: Mooney HA, Mack RN, McNeely JA, Neville LE, Schei PJ, Waage JK (eds) Invasive alien species. A new synthesis. Island Press, Washington, DC, pp 36–58Google Scholar
  21. Celino FT, Hilomen-Garcia GV, del Norte-Campos AGC (2012) Feeding selectivity of the seahorse, Hippocampus kuda (Bleeker), juveniles under laboratory conditions. Aquac Res 43:1804–1815. CrossRefGoogle Scholar
  22. Chiba S, Batten S, Martin CS, Ivory S, Miloslavich P, Weatherdon LV (2018) Zooplankton monitoring to contribute towards addressing global biodiversity conservation challenges. J Plankton Res 40:509–518. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Choi KH, Kimmerer W, Smith G, Ruiz GM, Lion K (2005) Post-exchange zooplankton in ballast water of ships entering the San Francisco Estuary. J Plankton Res 27:707–714CrossRefGoogle Scholar
  24. Colautti RI, MacIsaac HJ (2004) A neutral terminology to define ‘invasive’ species. Divers Distrib 10:135–141. CrossRefGoogle Scholar
  25. Cordell JR, Morrison SM (1996) The invasive Asian copepod Pseudodiaptomus inopinus in Oregon, Washington, and British Columbia Estuaries. Estuaries 19:628–638. CrossRefGoogle Scholar
  26. Cordell JR, Rasmussen M, Bollens SM (2007) Biology of the introduced copepod Pseudodiaptomus inopinus in a northeastern Pacific estuary. Mar Ecol Prog Ser 333:213–227CrossRefGoogle Scholar
  27. Cordell JR, Bollens SM, Draheim R, Sytsma M (2008) Asian copepods on the move: recent invasions in the Columbia-Snake River system. USA ICES J Mar Sci 65:753–758CrossRefGoogle Scholar
  28. Cosentino A, Giacobbe S (2011) The new potential invader Linopherus canariensis (Polychaeta: Amphinomidae) in a Mediterranean coastal lake: colonization dynamics and morphological remarks. Mar Poll Bull 62:236–245CrossRefGoogle Scholar
  29. Cosentino A, Giacobbe S, Potoschi A Jr (2009) The CSI of the Faro coastal lake (Messina): a natural observatory for the incoming of marine alien species. Biol Mar Mediterr 16:132–133Google Scholar
  30. de Olazabal A, Tirelli V (2011) First record of the egg-carrying calanoid copepod Pseudodiaptomus marinus in the Adriatic Sea. Mar Biodivers Rec 4:e85. CrossRefGoogle Scholar
  31. Delpy F, Pagano M (2018) Can changes in the distribution of two congeneric copepods (Acartia clausi vs. Acartia tonsa) constitute a sign of recovery for the anthropised Berre Lagoon (France, Mediterranean Sea)? In: Uttieri M (ed) Trends in copepod studies—distribution, biology and ecology. Nova Science Publishers Inc., New York, pp 119–144Google Scholar
  32. Delpy F, Pagano M, Blanchot J, Carlotti F, Thibault-Botha D (2012) Man-induced hydrological changes, metazooplankton communities and invasive species in the Berre Lagoon (Mediterranean Sea, France). Mar Poll Bull 64:1921–1932CrossRefGoogle Scholar
  33. Delpy F et al (2016) Identifying the drivers of abundance and size of the invasive ctenophore Mnemiopsis leidyi in Northwestern Mediterranean lagoons. Mar Environ Res 119:114–125. CrossRefPubMedGoogle Scholar
  34. Deschutter Y, Vergara G, Mortelmans J, Deneudt K, De Schamphelaere K, De Troch M (2018) Distribution of the invasive calanoid copepod Pseudodiaptomus marinus (Sato, 1913) in the Belgian part of the North Sea. Bioinvasions Rec 7:33–41. CrossRefGoogle Scholar
  35. Drillet G, Frouël S, Sichlau MH, Jepsen PM, Højgaard JK, Joarder AK, Hansen BW (2011) Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture 315:155–166CrossRefGoogle Scholar
  36. Dur G, Souissi S, Schmitt F, Cheng S-H, Hwang J-S (2010) The different aspects in motion of the three reproductive stages of Pseudodiaptomus annandalei (Copepoda, Calanoida). J Plankton Res 32:423–440CrossRefGoogle Scholar
  37. Erdoğan Ö, Ertan ÖO (2014) Abundance and diversity of zooplankton in the Köprüçay estuary, Turkey. J Aquac Eng Fish Res 1:19–32. CrossRefGoogle Scholar
  38. European Commission (2002) A strategy for the sustainable development of European aquaculture. European Commission, BrusselsGoogle Scholar
  39. Falk-Petersen J, Bøhn T, Sandlund OT (2006) On the numerous concepts in invasion biology. Biol Invasions 8:1409–1424. CrossRefGoogle Scholar
  40. Fancett MS, Kimmerer WJ (1985) Vertical migration of the demersal copepod Pseudodiaptomus as a means of predator avoidance. J Exp Mar Biol Ecol 88:31–43. CrossRefGoogle Scholar
  41. FAO (2016) The state of world fisheries and aquaculture 2016. Contributing to Food Security and Nutrition for All. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  42. Fernandez de Puelles ML, Valencia J, Jansá J (2001) Hydrographical characteristics and zooplankton distribution in the Mallorca channel (Western Mediterranean): spring 2001. ICES J Mar Sci 61:654–666. CrossRefGoogle Scholar
  43. Fernandez de Puelles ML, Pinot J-M, Valencia J (2003) Seasonal and interannual variability of zooplankton community in waters off Mallorca island (Balearic Sea, Western Mediterranean): 1994–1999. Oceanol Acta 26:673–686. CrossRefGoogle Scholar
  44. Fernandez de Puelles ML, Alemany F, Jansá J (2007) Zooplankton time-series in the Balearic Sea (Western Mediterranean): variability during the decade 1994–2003. Prog Oceanogr 74:329–354. CrossRefGoogle Scholar
  45. Fleminger A, Hendrix Kramer S (1988) Recent introduction of an Asian estuarine copepod, Pseudodiaptomus marinus (Copepoda: Calanoida), into southern California embayments. Mar Biol 98:535–541CrossRefGoogle Scholar
  46. Galil BS, Marchini A, Occhipinti-Ambrogi A, Minchin D, Narščius A, Ojaveer H, Olenin S (2014) International arrivals: widespread bioinvasions in European Seas. Ethol Ecol Evol 26:152–171. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Galil BS, Marchini A, Occhipinti-Ambrogi A (2018) East is east and West is west? Management of marine bioinvasions in the Mediterranean Sea. Estuar Coast Shelf Sci 201:7–16. CrossRefGoogle Scholar
  48. Garbazey OA, Popova EV, Gubanova AD, Altukov DA (2016) First record of the occurrence of Pseudodiaptomus marinus (Copepoda: Calanoida: Pseudodiaptomidae) in the Black Sea (Sevastopol Bay). Mar Biol J 1:78–80. CrossRefGoogle Scholar
  49. Günther B, Knebelsberger T, Neumann H, Laakmann S, Martinez Arbizu P (2018) Metabarcoding of marine environmental DNA based on mitochondrial and nuclear genes. Sci Rep 8:14822. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hansen BW (2017) Advances using copepods in aquaculture. J Plankton Res 39:972–974. CrossRefGoogle Scholar
  51. Hayes K, Sliwa C, Migus S, McEnnulty F, Dunstan P (2005) National priority pests: Part II. Ranking of Australian marine pests. Australian Government Department of the Environment and Heritage, ParkesGoogle Scholar
  52. Huang Y, Zhu L, Liu G (2006) The effects of bis(tributyltin) oxide on the development, reproduction and sex ratio of calanoid copepod Pseudodiaptomus marinus. Estuar Coast Shelf Sci 69:147–152. CrossRefGoogle Scholar
  53. Ibrahim A, Hage CH, Souissi A, Leray A, Heliot L, Souissi S, Vandenbunder B (2015) Label-free microscopy and stress responses reveal the functional organization of Pseudodiaptomus marinus copepod myofibrils. J Struct Biol 191:224–235. CrossRefPubMedGoogle Scholar
  54. Ibrahim A, Souissi A, Leray A, Héliot L, Vandenbunder B, Souissi S (2016) Myofibril changes in the copepod Pseudodiaptomus marinus exposed to haline and thermal stresses. PLoS ONE 11:e0164770. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ikeda T, Kanno Y, Ozaki K, Shinada A (2001) Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Mar Biol 139:587–596. CrossRefGoogle Scholar
  56. Islam MS, Hibino M, Tanaka M (2006a) Distribution and diets of larval and juvenile fishes: influence of salinity gradient and turbidity maximum in a temperate estuary in upper Ariake Bay, Japan. Estuar Coast Shelf Sci 68:62–74. CrossRefGoogle Scholar
  57. Islam MS, Ueda H, Tanaka M (2006b) Spatial and seasonal variations in copepod communities related to turbidity maximum along the Chikugo estuarine gradient in the upper Ariake Bay, Japan. Estuar Coast Shelf Sci 68:113–126. CrossRefGoogle Scholar
  58. Jenhani ABR, Fathalli A, Naceur HB, Hayouni D, Aouani J, Romdhane MS (2019) Screening for alien and harmful planktonic species in the Gulf of Gabes (Tunisia, Southeastern Mediterranean Sea). Reg Stud Mar Sci 27:100526. CrossRefGoogle Scholar
  59. Jha U, Jetter A, Lindley JA, Postel L, Wootton M (2013) Extension and distribution of Pseudodiaptomus marinus, an introduced copepod, in the North Sea. Mar Biodivers Rec 6:e53CrossRefGoogle Scholar
  60. Karuza A et al (2016) ‘End to end’ planktonic trophic web and its implications for the mussel farms in the Mar Piccolo of Taranto (Ionian Sea, Italy). Environ Sci Poll Res 23:12707–12724. CrossRefGoogle Scholar
  61. Katsanevakis S, Moustakas A (2018) Uncertainty in marine invasion science. Front Mar Sci 5:38. CrossRefGoogle Scholar
  62. Katsanevakis S et al (2014) Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquat Invasions 9:391–423. CrossRefGoogle Scholar
  63. Kiørboe T (2011) What makes pelagic copepods so successful? J Plankton Res 33:677–685. CrossRefGoogle Scholar
  64. Kissling WD et al (2018) Towards global data products of essential biodiversity variables on species traits. Nat Ecol Evol 2:1531–1540. CrossRefPubMedGoogle Scholar
  65. Kuftarkova E, Gubanov V, Kovrigina N, Eremin I, Senicheva M (2006) Ecological assessment of modern state of waters in the region of interaction of the Sevastopol Bay and part of the sea contiguous to it. Mar Ecol J 5:72–91Google Scholar
  66. Lawrence DJ, Cordell JR (2010) Relative contributions of domestic and foreign sourced ballast water to propagule pressure in Puget Sound, Washington, USA. Biol Conserv 143:700–709CrossRefGoogle Scholar
  67. Lee CE (2016) Evolutionary mechanisms of habitat invasions, using the copepod Eurytemora affinis as a model system. Evol Appl 9:248–270. CrossRefPubMedGoogle Scholar
  68. Lee C-H, Dahms H-U, Cheng S-H, Souissi S, Schmitt FG, Kumar R, Hwang J-S (2010) Predation of Pseudodiaptomus annandalei (Copepoda: Calanoida) by the grouper fish fry Epinephelus coioides under different hydrodynamic conditions. J Exp Mar Biol Ecol 393:17–22. CrossRefGoogle Scholar
  69. Lehette P, Ting SM, Chew L-L, Chong VC (2016) Respiration rates of the copepod Pseudodiaptomus annandalei in tropical waters: beyond the thermal optimum. J Plankton Res 38:456–467. CrossRefGoogle Scholar
  70. Liang D, Uye S-I (1997) Population dynamics and production of the planktonic copepods in a eutrophic inlet of the Inland Sea of Japan. IV. Pseudodiaptomus marinus, the egg-carrying calanoid. Mar Biol 128:415–421CrossRefGoogle Scholar
  71. Lodge DM (1993) Biological invasions: lessons for ecology. Trends Ecol Evol 8:133–137. CrossRefPubMedGoogle Scholar
  72. Lučić D, Mozetič P, Francé J, Lučić P, Lipej L (2015) Additional record of the non-indigenous copepod Pseudodiaptomus marinus (Sato, 1913) in the Adriatic Sea. Acta Adriat 56:275–282Google Scholar
  73. Marques AC (2011) Invasives: sea of data still to come. Science 333:936. CrossRefPubMedGoogle Scholar
  74. Marques SC, Azeiteiro UM, Marques JC, Neto JM, Pardal MÂ (2006) Zooplankton and ichthyoplankton communities in a temperate estuary: spatial and temporal patterns. J Plankton Res 28:297–312. CrossRefGoogle Scholar
  75. Marques SC, Pardal MÂ, Primo AL, Martinho F, Falcão J, Azeiteiro U, Molinero JC (2018a) Evidence for changes in estuarine zooplankton fostered by increased climate variance. Ecosystems 21:56–67. CrossRefGoogle Scholar
  76. Marques SC, Primo AL, Falcão J, Martinho F, Mendes S, Azeiteiro UM, Pardal MA (2018b) The impact of conspicuous environmental changes on the spatial and temporal dynamics of Acartia tonsa and Acartia clausi: a decadal study in a temperate estuary (Mondego, Portugal). In: Uttieri M (ed) Trends in copepod studies—distribution, biology and ecology. Nova Science Publishers Inc., New York, pp 145–171Google Scholar
  77. Mauchline J (1998) The biology of calanoid copepods. Academic Press, San DiegoGoogle Scholar
  78. Mazzocchi MG, Dubroca L, García Comas C, Di Capua I, Ribera d’Alcalà M (2012) Stability and resilience in coastal copepod assemblages: the case of the Mediterranean long-term ecological research at Station MC (LTER-MC). Prog Oceanogr 97–100:135–151CrossRefGoogle Scholar
  79. Minchin D, Gollasch S, Cohen AN, Hewitt CL, Olenin S (2009) Characterising vectors of marine invasion. In: Rilov G, Crooks JA (eds) Biological invasions in marine ecosystems. Ecological, management, and geographic perspectives. Ecological studies, vol 204. Springer, Berlin, pp 109–116. CrossRefGoogle Scholar
  80. Nagasawa S, Marumo R (1984) Feeding habits and copulation of the chaetognath Sagitta crassa. La mer 22:8–14Google Scholar
  81. Nilsson H, van Overloop J, Ali Mehdi R, Palsson J (2018) Transnational maritime spatial planning in the North Sea: the shipping context. Report on work-package 4 of the NorthSEE Project. Interreg North Sea Region NorthSEEGoogle Scholar
  82. Nomura H, Aihara K, Ishimaru T (2007) Feeding of the chaetognath Sagitta crassa Tokioka in heavily eutrophicated Tokyo Bay, Japan. Plankton Benthos Res 2:120–127. CrossRefGoogle Scholar
  83. Occhipinti-Ambrogi A, Galil BS (2004) A uniform terminology on bioinvasions: A chimera or an operative tool? Mar Poll Bull 49:688–694. CrossRefGoogle Scholar
  84. Ohtsuka S, Fosshagen A, Soh HY (1996) Three new species of the demersal calanoid copepod Placocalanus (Ridgewayiidae) from Okinawa, Southern Japan. Sarsia 81:247–263. CrossRefGoogle Scholar
  85. Ohtsuka S et al (2018) Possible origins of planktonic copepods, Pseudodiaptomus marinus (Crustacea: Copepoda; Calanoida), introduced from East Asia to the San Francisco Estuary based on a molecular analysis. Aquat Invasions 13:221–230. CrossRefGoogle Scholar
  86. Ojaveer H et al (2015) Classification of non-indigenous species based on their impacts: considerations for application in marine management. PLoS Biol 13:e1002130. CrossRefPubMedPubMedCentralGoogle Scholar
  87. Ojaveer H et al (2018) Historical baselines in marine bioinvasions: implications for policy and management. PLoS ONE 13:e0202383. CrossRefPubMedPubMedCentralGoogle Scholar
  88. Olivotto I, Buttino I, Borroni M, Piccinetti CC, Malzone MG, Carnevali O (2008) The use of the Mediterranean calanoid copepod Centropages typicus in yellowtail clownfish (Amphiprion clarkii) larviculture. Aquaculture 284:211–216. CrossRefGoogle Scholar
  89. Pansera M, Granata A, Guglielmo L, Minutoli R, Zagami G, Brugnano C (2014) How mesh-size selection reshape the description of zooplankton community structure in coastal lakes? Estuar Coast Shelf Sci 151:221–235CrossRefGoogle Scholar
  90. Pooley S, Queiroz AI (2018) Introduction: historical perspectives on bioinvasions in the Mediterranean Region. In: Queiroz AI, Pooley S (eds) Histories of bioinvasions in the mediterranean, vol 8. Environmental history. Springer, Cham, pp 1–19. CrossRefGoogle Scholar
  91. Rajakaruna H, Lewis M (2017) Temperature cycles affect colonization potential of calanoid copepods. J Theor Biol 419:77–89. CrossRefPubMedGoogle Scholar
  92. Rajakaruna H, Strasser C, Lewis M (2012) Identifying non-invasible habitats for marine copepods using temperature-dependent R0. Biol Invasions 14:633–647. CrossRefGoogle Scholar
  93. Rayner TA, Højgaard JK, Hansen BW, Hwang J-S (2017a) Density effect on the ovigerous rate of the calanoid copepod Pseudodiaptomus annandalei (Sewell 1919): implications for aquaculture. Aquac Res 48:4573–4577. CrossRefGoogle Scholar
  94. Rayner TA, Hwang J-S, Hansen BW (2017b) Minimizing the use of fish oil enrichment in live feed by use of a self-enriching calanoid copepod Pseudodiaptomus annandalei. J Plankton Res 39:1004–1011. CrossRefGoogle Scholar
  95. Reid PC, Colebrook JM, Matthews JBL, Aiken J (2003) The Continuous Plankton Recorder: concepts and history, from Plankton Indicator to undulating recorders. Prog Oceanogr 58:117–173. CrossRefGoogle Scholar
  96. Reyes-Martínez MJ, González-Gordillo JG (2019) New record of the non-indigenous copepod Pseudodiaptomus marinus Sato, 1913 (Calanoida, Pseudodiaptomidae) from the Guadalquivir Estuary (Gulf of Cádiz, SW Spain). Crustaceana 92:675–683. CrossRefGoogle Scholar
  97. Ribera d’Alcalà M et al (2004) Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends. Sci Mar 68(Suppl 1):65–83. CrossRefGoogle Scholar
  98. Richirt J, Goberville E, Ruiz-Gonzalez V, Sautour B (2019) Local changes in copepod composition and diversity in two coastal systems of Western Europe. Estuar Coast Shelf Sci 227:106304. CrossRefGoogle Scholar
  99. Rios-Jara E, González JG (2000) Effects of lunar periodicity on the emergence behavior of the demersal copepod Pseudodiaptomus cokeri in Phosphorescent Bay, Puerto Rico. Bull Mar Sci 67:887–901Google Scholar
  100. Ruiz GM, Fofonoff PW, Carlton JT, Wonham MJ, Hines AH (2000) Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Ann Rev Ecol Syst 31:481–531. CrossRefGoogle Scholar
  101. Ruiz G, Fofonoff P, Steves B, Dahlstrom A (2011) Marine crustacean invasions in North America: a synthesis of historical records and documented impacts. In: Galil B, Clark PF, Carlton JT (eds) In the wrong place—alien marine crustaceans: distribution, biology and impacts. Invading nature—Springer series in invasion ecology, vol 6. Springer, Dordrecht, pp 215–250. CrossRefGoogle Scholar
  102. Russell JC, Blackburn TM (2017) Invasive alien species: denialism, disagreement, definitions, and dialogue. Trends Ecol Evol 32:312–314. CrossRefPubMedPubMedCentralGoogle Scholar
  103. Sabia L, Uttieri M, Schmitt FG, Zagami G, Zambianchi E, Souissi S (2014) Pseudodiaptomus marinus Sato, 1913, a new invasive copepod in Lake Faro (Sicily): observations on the swimming behaviour and the sex-dependent responses to food. Zool Stud 53:49. CrossRefGoogle Scholar
  104. Sabia L, Zagami G, Mazzocchi MG, Zambianchi E, Uttieri M (2015) Spreading factors of a globally invading coastal copepod. Medit Mar Sci 16:460–471. CrossRefGoogle Scholar
  105. Sabia L, Di Capua I, Percopo I, Uttieri M, Amato A (2017) ITS2 in calanoid copepods: reconstructing phylogenetic relationships and identifying a newly introduced species in the Mediterranean. Eur Zool J 84:104–115. CrossRefGoogle Scholar
  106. Saint-Jean L, Pagano M (1990) Variation nycthémérale de la répartition verticale et de l’efficacité de collecte du zooplancton en lagune Ebrié (Côte d’Ivoire). Hydrobiologia 194:247–265. CrossRefGoogle Scholar
  107. Schlaepfer MA, Sax DE, Olden JD (2011) The potential conservation value of non-native species. Conserv Biol 25:428–437CrossRefGoogle Scholar
  108. Simberloff D (2015) Non-native invasive species and novel ecosystems. F1000Prime Rep 7:47. CrossRefPubMedPubMedCentralGoogle Scholar
  109. Soares MdO et al (2018) Marine bioinvasions: differences in tropical copepod communities between inside and outside a port. J Sea Res 134:42–48. CrossRefGoogle Scholar
  110. Stefanni S, Stanković D, Borme D, de Olazabal A, Juretić T, Pallavicini A, Tirelli V (2018) Multi-marker metabarcoding approach to study mesozooplankton at basin scale. Sci Rep 8:12085. CrossRefPubMedPubMedCentralGoogle Scholar
  111. Suzuki KW, Nakayama K, Tanaka M (2013) Distinctive copepod community of the estuarine turbidity maximum: comparative observations in three macrotidal estuaries (Chikugo, Midori, and Kuma Rivers), southwestern Japan. J Oceanogr 69:15–33. CrossRefGoogle Scholar
  112. Svetlichny L, Hubareva E, Isinibilir M (2017) Comparative trends in respiration rates, sinking and swimming speeds of copepods Pseudocalanus elongatus and Acartia clausi with comments on the cost of brooding strategy. J Exp Mar Biol Ecol 488:24–31. CrossRefGoogle Scholar
  113. Svetlichny L, Hubareva E, Khanaychenko A, Uttieri M (2019) Response to salinity and temperature changes in the alien Asian copepod Pseudodiaptomus marinus introduced in the Black Sea. J Exp Zool A 331:416–426. CrossRefGoogle Scholar
  114. Tarrant AM, Nilsson B, Hansen BW (2019) Molecular physiology of copepods—from biomarkers to transcriptomes and back again. Comp Biochem Physiol D 30:230–247. CrossRefGoogle Scholar
  115. Tlili S, Ovaert J, Souissi A, Ouddane B, Souissi S (2016) Acute toxicity, uptake and accumulation kinetics of nickel in an invasive copepod species: Pseudodiaptomus marinus. Chemosphere 144:1729–1737. CrossRefPubMedGoogle Scholar
  116. Tlili S, Ovaert J, Souissi A, Ouddane B, Lee J-S, Souissi S (2019) Bioaccumulation of mercury in the copepod Pseudodiaptomus marinus: a comparative study between waterborne and dietary pathways. Int J Environ Res 13:759–768. CrossRefGoogle Scholar
  117. Tournadre J (2014) Anthropogenic pressure on the open ocean: the growth of ship traffic revealed by altimeter data analysis. Geophys Res Lett 41:7924–7932. CrossRefGoogle Scholar
  118. Tsiamis K et al (2019) Non-indigenous species refined national baseline inventories: a synthesis in the context of the European Union’s Marine Strategy Framework Directive. Mar Poll Bull 145:429–435. CrossRefGoogle Scholar
  119. Uriarte I, Villate F, Iriarte A (2016) Zooplankton recolonization of the inner estuary of Bilbao: influence of pollution abatement, climate and non-indigenous species. J Plankton Res 38:718–731. CrossRefGoogle Scholar
  120. Uttieri M (2018) Trends in copepod studies. In: Uttieri M (ed) Trends in copepod studies—distribution, biology and ecology. Nova Science Publishers Inc., New York, pp 1–11Google Scholar
  121. Uye S-I (2005) A brief review of mass culture copepods used for fish food in Japanese mariculture and a proposed plan to use high biomass natural populations of brackish-water copepods. In: Lee C, O’Bryen PJ, Marcus NH (eds) Copepods in aquaculture. Blackwell, Ames, pp 75–89. CrossRefGoogle Scholar
  122. Uye S-I, Kasahara S (1983) Grazing of various developmental stages of Pseudodiaptomus marinus (Copepoda: Calanoida) on naturally occurring particles. Bull Plankton Res Jpn 30:147–158Google Scholar
  123. Uye S-I, Kayano Y (1994a) Predatory feeding behavior of Tortanus (Copepoda: Calanoida): life-stage differences and the predation impact on small planktonic crustaceans. J Crust Biol 14:473–483. CrossRefGoogle Scholar
  124. Uye S-I, Kayano Y (1994b) Predatory feeding of the planktonic copepod Tortanus forcipatus on three different prey. Bull Plankton Res Jpn 40:173–176Google Scholar
  125. Uye S-I, Onbé T (1975) The developmental stages of Pseudodiaptomus marinus Sato (Copepoda, Calanoida) reared in the laboratory. Bull Plankton Res Jpn 21:65–76Google Scholar
  126. Vidjak O et al (2019) Zooplankton in Adriatic port environments: indigenous communities and non-indigenous species. Mar Poll Bull 147:133–149. CrossRefGoogle Scholar
  127. Villate F, Uriarte I, Iriarte A (2018) Impact of the invasive species Acartia tonsa on the distribution of autochthonous Acartiidae species in estuaries of the Bay of Biscay. In: Uttieri M (ed) Trends in copepod studies—distribution, biology and ecology. Nova Science Publishers Inc., New York, pp 83–117Google Scholar
  128. Walter TC (1986a) New and poorly known Indo-Pacific species of Pseudodiaptomus (Copepoda: Calanoida), with a key to the species groups. J Plankton Res 8:129–168CrossRefGoogle Scholar
  129. Walter TC (1986b) The zoogeography of the genus Pseudodiaptomus (Calanoida: Pseudodiaptomidae). Syllogeus 58:502–508Google Scholar
  130. Wootton M, Fischer AC, Ostle C, Skinner J, Stevens DP, Johns DG (2018) Using the Continuous Plankton Recorder to study the distribution and ecology of marine pelagic copepods. In: Uttieri M (ed) Trends in copepod studies—distribution, biology and ecology. Nova Science Publishers Inc., New York, pp 13–42Google Scholar
  131. Youngbluth MJ (1982) Sampling demersal zooplankton: a comparison of field collections using three different emergence traps. J Exp Mar Biol Ecol 61:111–124. CrossRefGoogle Scholar
  132. Zagami G, Brugnano C (2013) Diel, seasonal and man-induced changes in copepod assemblages and diversity, with special emphasis on hyperbenthic calanoid species, in a Mediterranean meromictic system (Lake Faro). Mar Fresh Res 64:951–964CrossRefGoogle Scholar
  133. Zagami G, Costanzo G, Crescenti N (2005) First record in Mediterranean Sea and redescription of the bentho-planktonic calanoid copepod species Pseudocyclops xiphophorus Wells, 1967. J Mar Syst 55:67–76. CrossRefGoogle Scholar
  134. Zagami G, Brugnano C, Costanzo G (2008) Pseudocyclops giussanii (Copepoda: Calanoida: Pseudocyclopidae), a new species from Lake Faro (Central Mediterranean Sea). Zool Stud 47:605–613Google Scholar
  135. Zagami G, Brugnano C, Granata A, Guglielmo L, Minutoli R, Aloise A (2018) Biogeographical distribution and ecology of the planktonic copepod Oithona davisae: rapid invasion in Lakes Faro and Ganzirri (Central Mediterranean Sea). In: Uttieri M (ed) Trends in copepod studies—distribution, biology and ecology. Nova Science Publishers Inc., New York, pp 59–82Google Scholar
  136. Zenetos A et al (2010) Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. Medit Mar Sci 11:381–493CrossRefGoogle Scholar
  137. Zenetos A et al (2012) Alien species in the Mediterranean Sea by 2012. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part 2. Introduction trends and pathways. Medit Mar Sci 13:328–352CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Integrative Marine EcologyStazione Zoologica Anton DohrnNaplesItaly
  2. 2.CoNISMa – National Inter-University Consortium for Marine SciencesRomeItaly
  3. 3.ARPA Lazio - Regional Environmental Protection AgencyLatinaItaly
  4. 4.Sequentia Biotech SLBellaterra (Cerdanyola del Vallès)Spain
  5. 5.Laboratoire de Physiologie Cellulaire et VégétaleUniversité Grenoble Alpes, CEA, INRA, CNRS. IRIGGrenoble Cedex 9France
  6. 6.Institute of Oceanography and FisheriesSplitCroatia
  7. 7.CPR Survey, The Marine Biological Association, The Laboratory, Citadel HillPlymouthUK
  8. 8.ISMAR –Institute of Marine SciencesCNR National Research CouncilVeniceItaly
  9. 9.Aix Marseille Université, Université de Toulon, CNRS, IRD, OSU PYTHEAS, MIO, UM 110MarseilleFrance
  10. 10.Istituto Nazionale di Oceanografia e di Geofisica Sperimentale-OGSTriesteItaly
  11. 11.Research Infrastructures for Marine Biological ResourcesStazione Zoologica Anton DohrnNaplesItaly
  12. 12.MARE – Marine and Environmental Sciences CentreInstituto Politécnico de LeiriaPenichePortugal
  13. 13.Spanish Institute of Oceanography, Baleares LaboratoryPalma de MallorcaSpain
  14. 14.Institute of Marine Biological ResearchRussian Academy of SciencesMoscowRussia
  15. 15.Department of Plant Biology and Ecology, Faculty of PharmacyUniversity of the Basque Country (UPV/EHU)GasteizSpain
  16. 16.Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station; PiE-UPV/EHU) Areatza PasalekuaPlentziaSpain
  17. 17.Institute for Marine and Coastal ResearchUniversity of DubrovnikDubrovnikCroatia
  18. 18.Department of AquacultureUniversity of DubrovnikDubrovnikCroatia
  19. 19.Department of Chemical, Pharmaceutical, Biological and Environmental SciencesUniversity of MessinaS. Agata MessinaItaly
  20. 20.CFE – Centre for Functional Ecology – Science for People and the Planet, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  21. 21.I. I. Schmalhausen Institute of ZoologyNational Academy of Sciences of UkraineKievUkraine
  22. 22.Ministry of Environment and EnergyZagrebCroatia
  23. 23.Department of Plant Biology and Ecology, Faculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)BilbaoSpain
  24. 24.Hellenic Center for Marine ResearchInstitute of OceanographyAthensGreece

Personalised recommendations