The danger of non-native gardens: risk of invasion by Schefflera arboricola associated with seed dispersal by birds

  • Brisa MarciniakEmail author
  • Michele de Sá Dechoum
  • Tânia Tarabini Castellani
Original Paper


The success of invasion by non-native species can be influenced by positive interactions established in the area of introduction. For instance, seed dispersal by birds can increase seed rain, seed germination, and, as a consequence, the probability of establishment of new invasion foci. Schefflera arboricola, an ornamental shrub with fruits largely consumed by birds, is invasive in several countries. To our knowledge, this is the first research project on mechanisms that might explain the success of S. arboricola in areas where it is invasive. The main aim of this study was to assess the invasiveness of S. arboricola associated with seed dispersal by birds. Fruit availability and frugivory interactions with local birds were registered and the germination percentage of seeds not consumed by birds was compared to the germination of seeds collected from bird feces. Our results show that frugivory and seed dispersal by native birds increase the establishment of S. arboricola. In addition, intrinsic species traits such as extended flowering and fruiting, high percentage of seed germination, early germination due to frugivory, and ability to establish in different microhabitats facilitate invasion by S. arboricola. Given the intensive horticultural use of S. arboricola and seed dispersal interactions with generalist birds, there is an imminent risk of invasion in forest remnants close to wherever S. arboricola is cultivated. We recommend that adult plants of S. arboricola are eliminated from gardens and semi-natural areas close to protected areas as a prevention measure to avoid invasions and impacts on natural habitats.


Biological interaction Frugivory Invasive non-native plant Management Protected area Seed dispersal Seed germination 



We thank F. Bruggemann for his logistical support and all the colleagues who helped in the fieldwork. We thank S. Zalba and N. Hanazaki for their suggestions in previous versions of the MS, and S. Ziller for the helpful and careful assistance with the language. We also thank the two anonymous reviewers and the editor who helped to improve the manuscript. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES).


  1. Agostinelli C, Lund U (2017) R package ‘circular’: Circular Statistics (version 0.4-93). Accessed 23 December 2018
  2. Aizen MA, Morales CL, Morales JM (2008) Invasive mutualists erode native pollination webs. PLoS Biol 6:396–403CrossRefGoogle Scholar
  3. Alves KJF (2008) Composição da avifauna e frugivoria por aves em um mosaico sucessional na Mata Atlântica. Dissertation, Paulista State UniversityGoogle Scholar
  4. Amodeo MR, Zalba SM (2013) Wild cherries invading natural grasslands: unravelling colonization history from population structure and spatial patterns. Plant Ecol 214:1299–1307CrossRefGoogle Scholar
  5. Amodeo MR, Zalba SM (2015) Phenology of Prunus mahaleb, a fleshy fruited tree invading natural grasslands in Argentine pampas. In: Waterman R (ed) Biological invasions: patterns, management and economic impacts. Nova Science Publishers, New York, pp 121–141Google Scholar
  6. Amodeo MR, Vázquez MB, Zalba SM (2017) Generalist dispersers promote germination of an alien fleshy-fruited tree invading natural grasslands. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Aslan CE, Sikes BA, Gedan KB (2015) Research on mutualisms between native and non-native partners can contribute critical ecological insights. NeoBiota 26:39–54CrossRefGoogle Scholar
  8. Athiê S, Dias MM (2012) Frugivoria por aves em um mosaico de Floresta Estacional Semidecidual e reflorestamento misto em Rio Claro, São Paulo, Brasil. Acta Bot Bras 26:84–93CrossRefGoogle Scholar
  9. Barton K (2018) MuMIn: multi-model inference. R package version 1.42.1. Accessed 23 December 2018
  10. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48CrossRefGoogle Scholar
  11. Becwar MR, Stanwood PC, Leonhardt KW (1983) Dehydration effects on freezing characteristics and survival in liquid nitrogen of desiccation-tolerant and desiccation-sensitive seeds. J Am Soc Hortic Sci 108(4):613–618Google Scholar
  12. Begnini RM (2011) Chuva de sementes, dispersores e recrutamento de plântulas sob a copa de Myrsine coriacea, uma espécie arbórea pioneira no processo de sucessão secundária da Floresta Ombrófila Densa. Dissertation, Federal University of Santa CatarinaGoogle Scholar
  13. Blendinger PG, Loiselle BA, Blake JG (2008) Crop size, plant aggregation, and microhabitat type affect fruit removal by birds from individual melastome plants in the Upper Amazon. Oecologia 158(2):273–283PubMedCrossRefGoogle Scholar
  14. Brazil National Invasive Alien Species Database (2018) Base de Dados de Espécies Exóticas Invasoras -Instituto Hórus de Desenvolvimento e Conservação Ambiental. Accessed 17 December 2018
  15. Brazilian Ornithological Records Committee (2014) Checklist of the Birds of Brazil. Accessed 23 December 2018
  16. Buckley YM, Anderson S, Catterall CP et al (2006) Management of plant invasions mediated by frugivore interactions. J Appl Ecol 43(5):848–857CrossRefGoogle Scholar
  17. Caplat P, Coutts S, Buckley YM (2012) Modeling population dynamics, landscape structure, and management decisions for controlling the spread of invasive plants. Ann Ny Acad Sci 1249(1):72–83PubMedCrossRefGoogle Scholar
  18. Carlo TA (2005) Interspecific neighbors change seed dispersal pattern of an avian-dispersed plant. Ecology 86(9):2440–2449CrossRefGoogle Scholar
  19. Casetta E, Rubim P, Lunardi VO, Francisco MR, Galetti M (2002) Frugivoria e dispersão de sementes de Talauma ovata (Magnoliaceae) no sudeste brasileiro. Ararajuba 10(2):199–206Google Scholar
  20. Chen J, Henny RJ, Mcconnell DB (2002) Development of new foliage plant cultivars. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 466–472Google Scholar
  21. CIRAM/EPAGRI—Centro de Informações de Recursos Ambientais e de Hidrometeorologia de Santa Catarina/Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina—CIRAM/EPAGRI 1990–2000. Accessed 23 December 2018
  22. Crestani AC, Mello MAR, Cazetta E (2019) Interindividual variations in plant and fruit traits affect the structure of a plant-frugivore network. Acta Oecol 95:120–127CrossRefGoogle Scholar
  23. Dechoum MS, Castellani TT, Zalba SM, Rejmánek M, Peroni N, Tamashiro JY (2015a) Community structure, succession and invasibility in a seasonal deciduous forest in southern Brazil. Biol Invasions 17:1697–1712CrossRefGoogle Scholar
  24. Dechoum MS, Rejmánek M, Castellani TT, Zalba SM (2015b) Limited seed dispersal may explain differences in forest colonization by the Japanese raisin tree (Hovenia dulcis Thunb.), an invasive alien tree in Southern Brazil. Trop Conserv Sci 8(3):610–622CrossRefGoogle Scholar
  25. Dlamini P, Zachariades C, Downs CT (2018) The effect of frugivorous birds on seed dispersal and germination of the invasive Brazilian pepper tree (Schinus terebinthifolius) and Indian laurel (Litsea glutinosa). S Afr J Bot 114:61–68CrossRefGoogle Scholar
  26. Farwig N, Berens DG (2012) Imagine a world without seed dispersers: a review of threats, consequences and future directions. Basic Appl Ecol 13(2):109–115CrossRefGoogle Scholar
  27. FATMA—Fundação Do Meio Ambiente (2009) Parque Estadual da Serra do Tabuleiro: retratos da fauna e da flora. criAG, FlorianópolisGoogle Scholar
  28. Figueiredo RAD, Oliveira AAD, Zacharias MA et al (2008) Reproductive ecology of the exotic tree Muntingia calabura L. (Muntingiaceae) in southeastern Brazil. Revista Árvore 32(6):993–999CrossRefGoogle Scholar
  29. Foster MS (1990) Factors influencing bird foraging preferences among conspecific fruit trees. Condor 92:844–854CrossRefGoogle Scholar
  30. Fournier LA (1974) Un método cuantitativo para la medicion de características fenológicas en árboles. Turrialba 24:422–423Google Scholar
  31. Foxcroft LC, Richardson DM, Wilson JR (2008) Ornamental plants as invasive aliens: problems and solutions in Kruger National Park, South Africa. Environ Manag 41:32–51CrossRefGoogle Scholar
  32. Foxcroft LC, Jarošík V, Pyšek P, Richardson DM, Rouget M (2011) Protected-area boundaries as filters of plant invasions. Conserv Biol 25(2):400–405PubMedPubMedCentralGoogle Scholar
  33. Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008) Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol 23(12):695–703PubMedCrossRefPubMedCentralGoogle Scholar
  34. Galetti M, Pizo MA, Morellato PC (2003) Fenologia, frugivoria e dispersão de sementes. In: Cullen L, Valladares-Padua C, Rudran R (eds) Métodos de Estudos em Biologia da Conservação e Manejo de Vida Silvestre. UFPR, Curitiba, pp 395–420Google Scholar
  35. Gilman EF (1999) Schefflera arboricola. Institute of Food and Agricultural Sciences, Fact Sheet FPS-541, pp 1–3Google Scholar
  36. Gioria M, Pyšek P, Osborne BA (2018) Timing is everything: does early and late germination favor invasions by herbaceous alien plants? J Plant Ecol. CrossRefGoogle Scholar
  37. Gosper CR, Vivian-Smith G (2010) Fruit traits of vertebrate-dispersed alien plants: smaller seeds and more pulp sugar than indigenous species. Biol Invasions 12(7):2153–2163CrossRefGoogle Scholar
  38. Gosper CR, Stansbury CD, Vivian-Smith G (2005) Seed dispersal of fleshy-fruited invasive plants by birds: contributing factors and management options. Divers Distrib 11:549–558CrossRefGoogle Scholar
  39. Guix JC (2007) The role of alien plants in the composition of fruit-eating bird assemblages in Brazilian urban ecosystems. Orsis: organismes i sistemes 22:87–104Google Scholar
  40. Guo WY, Van Kleunen M, Pierce S et al (2019) Domestic gardens play a dominant role in selecting alien species with adaptive strategies that facilitate naturalization. Global Ecol Biogeogr 28(5):628–639CrossRefGoogle Scholar
  41. Heleno RH, Olesen JM, Nogales M, Vargas P, Traveset A (2013) Seed dispersal networks in the Galápagos and the consequences of alien plant invasions. Proc R Soc Lond B. CrossRefGoogle Scholar
  42. Hulme PE, Bacher S, Kenis M et al (2008) Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Eco 45(2):403–414CrossRefGoogle Scholar
  43. Ikuta KG, Martins FC (2013) Interação entre aves frugívoras e plantas no Parque Estadual da Cantareira, estado de São Paulo. Atualidades Ornitológicas 172:33–36Google Scholar
  44. Jordaan LA, Johnson SD, Downs CT (2011) The role of avian frugivores in germination of seeds of fleshy-fruited invasive alien plants. Biol Invasions 13(8):1917–1930CrossRefGoogle Scholar
  45. Jordano P, Schupp EW (2000) Seed disperser effectiveness: the quantity component and patterns of seed rain for Prunus mahaleb. Ecol Monogr 70:591–615CrossRefGoogle Scholar
  46. Kueffer C, Kronauer L, Edwards PJ (2009) Wider spectrum of fruit traits in invasive than native floras may increase the vulnerability of oceanic islands to plant invasions. Oikos 118:1327–1334CrossRefGoogle Scholar
  47. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74(6):1659–1673CrossRefGoogle Scholar
  48. Lorenzi H, Souza HM (2008) Plantas ornamentais no Brasil: arbustivas, herbáceas e trepadeiras, 4th edn. Instituto Plantarum, Nova OdessaGoogle Scholar
  49. Mantovani M, Ruschel AR, Reis MD, Puchalski A, Nodari RO (2003) Fenologia reprodutiva de espécies arbóreas em uma formação secundária da floresta atlântica. Revista Árvore 27(4):451–458CrossRefGoogle Scholar
  50. Menke S, Böhning-Gaese K, Schleuning M (2012) Plant–frugivore networks are less specialized and more robust at forest–farmland edges than in the interior of a tropical forest. Oikos 121(10):1553–1566CrossRefGoogle Scholar
  51. Mokotjomela TM, Musil CF, Esler KJ (2013) Frugivorous birds visit fruits of emerging alien shrub species more frequently than those of native shrub species in the South African Mediterranean climate region. S Afr J Bot 86:73–78CrossRefGoogle Scholar
  52. Moody ME, Mack RN (1988) Controlling the spread of plant invasions: the importance of nascent foci. J Appl Ecol 25:1009–1021CrossRefGoogle Scholar
  53. Morales C, Traveset A, Ramírez N (2009) Especies invasoras y mutualismos planta-animal. In: Medel R, Aizen M, Zamora R (eds) Ecología y Evolución de interaciones planta-animal. Editorial Universitaria, Santiago de Chile, pp 247–261Google Scholar
  54. Morellato LPC, Alberti LF, Hudson IL (2010) Applications of circular statistics in plant phenology: a case studies approach. In: Keatley M, Hudson IL (eds) Phenological research: methods for environmental and climate change analysis. Springer, New York, pp 357–371Google Scholar
  55. Muñoz MC, Ackerman JD (2013) Invasive plants and mutualistic interactions between fleshy fruits and frugivorous animals. In: Shibu J, Harminder PS, Daizy RB, Ravinder KK (eds) Invasive plant ecology. CRC Press, Boca Raton, pp 121–136CrossRefGoogle Scholar
  56. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858CrossRefGoogle Scholar
  57. Navarro AB, Bovo AAA et al (2018) Fruit availability at the individual and local levels influences fruit removal in Cecropia pachystachya. Braz J Biol 79(4):758–759PubMedCrossRefGoogle Scholar
  58. Ohashi H (1993) Araliaceae. In: Huang TC (ed) Flora of Taiwan. Editorial Committee of the Flora of Taiwan, Taipei, p 1002Google Scholar
  59. Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51(11):933–938CrossRefGoogle Scholar
  60. Ortiz-Pulido R, Albores-Barajas YV, Díaz SA (2007) Fruit removal efficiency and success: influence of crop size in a neotropical treelet. Plant Ecol 189(1):147–154CrossRefGoogle Scholar
  61. Panetta FD, McKee J (1997) Recruitment of the invasive ornamental, Schinus terebinthifolius is dependent upon frugivores. Aust J Ecol 22:432–438CrossRefGoogle Scholar
  62. Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 4(2):439–473CrossRefGoogle Scholar
  63. Pinheiro J, Bates D, Debroy S, Sarker D (2018) R Core Team pacote nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–137. Accessed 23 December 2018
  64. Pizo MA (2004) Frugivory and habitat use by fruit-eating birds in a fragmented landscape of southeast Brazil. Ornitologia Neotropical 15(1):117–126Google Scholar
  65. Pizo MA (2012) O movimento dos animais frugívoros e das sementes em paisagens fragmentadas. In: Del-Claro KE, Torezan-Silingardi HM (eds) Ecologia das interações plantas-animais: uma abordagem ecológico evolutiva. Technical Books Editora, Rio de Janeiro, pp 141–154Google Scholar
  66. Pizo MA, Almeida-Neto M (2009) Determinants of fruit removal in Geonoma pauciflora, an understory palm of neotropical forests. Ecol Res 24(6):1179–1186CrossRefGoogle Scholar
  67. Pizo MA, Galetti M (2010) Métodos e perspectivas da frugivoria e dispersão de sementes por aves. In: Von Matter S, Straube FC, Accordi I, Piacentini V, Cândido-Jr JF (eds) Ornitologia e conservação: ciência aplicada, técnicas de pesquisa e levantamento. Technical Books, Rio de Janeiro, pp 493–506Google Scholar
  68. Potgieter LJ, Gaertner M, O’Farrell PJ, Richardson DM (2019) Perceptions of impact: invasive alien plants in the urban environment. J Environ Manag 229:76–87CrossRefGoogle Scholar
  69. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Accessed 4 November 2018
  70. Renne IJ, Gauthreaux SA, Gresham CA (2000) Seed dispersal of the Chinese tallow tree (Sapium sebiferum (L.) Roxb.) by birds in coastal South Carolina. Am Midl Nat 144(1):202–215CrossRefGoogle Scholar
  71. Richardson DM, Pyšek P (2012) Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol 196(2):383–396PubMedCrossRefGoogle Scholar
  72. Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17(5):788–809CrossRefGoogle Scholar
  73. Richardson DM, Allsopp N, D’antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75:65–93PubMedCrossRefGoogle Scholar
  74. Robertson AW, Trass A et al (2006) Assessing the benefits of frugivory for seed germination: the importance of the deinhibition effect. Funct Ecol 20(1):58–66CrossRefGoogle Scholar
  75. Romahn V (2009) Arbustos decorativos: Conheça a versatilidade e a beleza de 161 plantas que valorizam o seu jardim. Europa, São PauloGoogle Scholar
  76. Santa Catarina (2012) Conselho Estadual do Meio Ambiente. Resolução CONSEMA Nº 08, de 14 de setembro de 2012Google Scholar
  77. Saracco JF, Collazo JA, Groom MJ (2004) How do frugivores track resources? Insights from spatial analyses of bird foraging in a tropical forest. Oecologia 139(2):235–245PubMedCrossRefPubMedCentralGoogle Scholar
  78. Saracco JF, Collazo JA, Groom MJ, Carlo TA (2005) Crop size and fruit neighborhood effects on bird visitation to fruiting Schefflera morototoni trees in Puerto Rico. Biotropica 37(1):81–87CrossRefGoogle Scholar
  79. Schleuning M, Blüthgen N et al (2011) Specialization and interaction strength in a tropical plant–frugivore network differ among forest strata. Ecology 92(1):26–36PubMedCrossRefPubMedCentralGoogle Scholar
  80. Schupp EW, Jordano P, Gómez JM (2010) Seed dispersal effectiveness revisited: a conceptual review. New Phytol 188(2):333–353PubMedCrossRefGoogle Scholar
  81. Seebens H, Blackburn TM, Dyer E et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sick H (1997) Ornitologia brasileira. Nova Fronteira, Rio de JaneiroGoogle Scholar
  83. Sigrist T (2014) Guia de campo Avis brasilis—Avifauna brasileira. Avis Brasilis, São PauloGoogle Scholar
  84. Silva PA (2015) Mutualismo arriscado na área suburbana: frutos da árvore exótica Schefflera actinophylla (Endil.) Harms (Araliaceae) beneficiam aves nativas que potencialmente dispersam suas sementes. Ambiência 11(2):423–441CrossRefGoogle Scholar
  85. Silva JCB, Junior JFC, Vogel HF, Campos JB (2013) Dispersão por aves de Psidium guajava L. (Myrtaceae) em ambiente ripário na bacia do rio Paraná, Brasil. Semina Ciências Biológicas e da Saúde 34(2):195–204CrossRefGoogle Scholar
  86. Snow DW (1981) Tropical frugivorous birds and their food plants: a world survey. Biotropica 13:1–14CrossRefGoogle Scholar
  87. Starr F, Starr K, Loope LL (2006) Main report: roadside survey and expert interviews for selected plant species on Molokai. Hawaii, United States Fish and Wildlife Service, HonoluluGoogle Scholar
  88. Toledo C (2018) Frugivoria e dispersão de sementes por aves em uma área urbanizada. Paulista State University, MonographGoogle Scholar
  89. Trakhtenbrot A, Nathan R, Perry G, Richardson DM (2005) The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 11(2):173–181CrossRefGoogle Scholar
  90. Traveset A (1998) Effect of seed passage through vertebrate frugivores’ guts on germination: a review. Perspect Plant Ecol Syst 1(2):151–190CrossRefGoogle Scholar
  91. Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216PubMedCrossRefGoogle Scholar
  92. Traveset A, Richardson DM (2011) Mutualisms: key drivers of invasions… key casualties of invasions. In: Richardson DM (ed) Fifty years of invasion ecology: the legacy of Charles Elton. Wiley-Blackwell, Oxford, pp 143–160Google Scholar
  93. Traveset A, Richardson DM (2014) Mutualistic interactions and biological invasions. Annu Rev Ecol Evol Syst 4:89–113CrossRefGoogle Scholar
  94. Traveset A, Gonzalez-Varo JP, Valido A (2012) Long-term demographic consequences of a seed dispersal disruption. Proc R Soc B 279:3298–3303PubMedCrossRefPubMedCentralGoogle Scholar
  95. Van Kleunen M, Essl F, Pergl J et al (2018) The changing role of ornamental horticulture in alien plant invasions. Biol Rev. CrossRefPubMedPubMedCentralGoogle Scholar
  96. Vélez MCD, Sérsic AN, Traveset A, Paiaro V (2018) The role of frugivorous birds in fruit removal and seed germination of the invasive alien Cotoneaster franchetii in central Argentina. Austral Ecol 43(5):558–566CrossRefGoogle Scholar
  97. Wei T, Simko V (2017) R package “corrplot”: Visualization of a Correlation Matrix. Accessed 23 December 2018
  98. Westcott DA, Fletcher CS (2011) Biological invasions and the study of vertebrate dispersal of plants: opportunities and integration. Acta Oecol 37(6):650–656CrossRefGoogle Scholar
  99. Wheelwright NT, Janson CH (1985) Colors of fruit displays of bird-dispersed plants in two tropical forests. Am Nat 126(6):777–799CrossRefGoogle Scholar
  100. Wu CC, Tsui CC, Hseih CF, Asio VB, Chen ZS (2007a) Mineral nutrient status of tree species in relation to environmental factors in the subtropical rain forest of Taiwan. Forest Ecol Manag 239:81–91CrossRefGoogle Scholar
  101. Wu ZY, Raven PH, Hong DY (2007b) Flora of China (Clusiaceae through Araliaceae), vol 13. Science Press, BeijingGoogle Scholar
  102. Ziller SR, Dechoum MS (2013) Plantas e vertebrados exóticos invasores em unidades de conservação no Brasil. Biodiversidade Brasileira 3(2):4–31Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Programa de pós-graduação em EcologiaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Departamento de Ecologia e ZoologiaUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations