Biological Invasions

, Volume 21, Issue 12, pp 3593–3606 | Cite as

Societal perception, impacts and judgment values about invasive freshwater stingrays

  • Daniel Alves dos SantosEmail author
  • Igor de Paiva Affonso
  • Hugo José Message
  • Edson Kyioshi Okada
  • Luiz Carlos Gomes
  • Hugo Bornatowski
  • Jean Ricardo Simões Vitule
Original Paper


We currently face a unique phase in the global biodiversity crisis because of massive introductions of non-native species into greatly altered ecosystems. These introductions frequently occur as a consequence of human constructions and structures such as dams that allow species to overcome historic established biogeographic barriers. There is a pressing need for study the socio-economic influence of invasive populations. Here we assessed the effects of one of the largest invasion events of elasmobranchs in the world. We investigated socio-economic impacts caused by invasive populations of freshwater stingrays in the upper Paraná River ecoregion (Brazil) using questionnaires to survey 125 artisanal fishers. The two study species are not tradable, may damage gear and cause accidents directly linked with their presence in the ecosystem, so are associated with economic losses for fishers. Thus, the local population perceives stingrays as a bycatch with strong negative socio-economic outcomes. Our results indicate that large-scale invasions triggered by enterprises (e.g. dams) can misguide conservation policies and management and cause multilevel damages to human well-being, especially if local information and local perception are not taken into account. The assessment of social perception demonstrated that invasive stingrays are not welcome or beneficial for the traditional resident human population.


Anthropogenic impacts Large-scale fish invasions Infrastructure Economic losses Social harm and risk Ecosystem change 



We thank the State University of Maringá (UEM), PEA (Post-Graduation Program in Aquatic Ecology) and Nupélia Research Center staff who supported the field collections. We also thank the Porto Rico Fisheries Association who facilitated our contact with the fishers and supported all steps of this research. In addition, we thank RR Ota for reviewing species details in the Supplementary Material A. This study was financially supported by Coordination of Improvement of Higher Education Personnel (CAPES) and National Council for Scientific and Technological Development (CNPq), with contributions to field research and a graduate scholarship for the first author. JRSV received research productivity grants from CNPq (302367/2018-7; 303776/2015-3).

Compliance with ethical standards

Conflict of interest

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript, apart from those disclosed in the acknowledgments.

Supplementary material

10530_2019_2071_MOESM1_ESM.pdf (275 kb)
Supplementary material 1 (PDF 274 kb)
10530_2019_2071_MOESM2_ESM.pdf (361 kb)
Supplementary material 2 (PDF 360 kb)


  1. Abell R et al (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58:403–414CrossRefGoogle Scholar
  2. Affonso IP et al (2015) Pulling the plug: strategies to preclude expansion of dams in Brazilian rivers with high-priority for conservation. Nat Conserv 13:199–203CrossRefGoogle Scholar
  3. Agostinho AA, Gomes LC (2002) Biodiversity and fisheries management in the Paraná river basin: successes and failures. Blue Millennium-World Fisheries Trust CRDI-UNEP, Universidade Estadual de Maringá, MaringáGoogle Scholar
  4. Agostinho AA et al (2004a) Fish assemblages. In: Thomaz SM, Agostinho AA, Hahn NS (eds) The Upper Paraná River and its floodplain: physical aspects, ecology and conservation. Backhuys Publishers, Leiden, pp 223–246Google Scholar
  5. Agostinho AA et al (2004b) Structure and functioning of the Paraná River and its floodplain. Maringá, EduemGoogle Scholar
  6. Agostinho AA, Gomes LC, Santos NC, Ortega JC, Pelicice FM (2016) Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fish Res 173:26–36CrossRefGoogle Scholar
  7. Baumgartner G et al (2004) Identification of spawning sites and natural nurseries of fishes in the upper Paraná river, Brazil. Environ Biol Fishes 71:115–125CrossRefGoogle Scholar
  8. Begossi A, Silva AL (2004) Ecologia de pescadores da Mata Atlântica e da Amazônia (Vol. 6). Ed. HucitecGoogle Scholar
  9. Bezerra LAV, Freitas MO, Daga VS, Occhi TVT, Faria L, Costa APL, Padial AA, Prodocimo V, Vitule JRS (2019) A network meta-analysis of threats to south American fish biodiversity. Fish Fish (in press) Google Scholar
  10. Blanchet S et al (2009) Broad-scale determinants of non-native fish species richness are context-dependent. Proc R Soc B Biol Sci 276:2385–2394CrossRefGoogle Scholar
  11. Braga RR, Gómez-Aparicio L, Heger T, Vitule JRS, Jeschke JM (2018) Structuring evidence for invasional meltdown: broad support but with biases and gaps. Biol Invasions 20:923–936CrossRefGoogle Scholar
  12. Carlton JW et al (2017) Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. Science 357:1402–1406CrossRefPubMedPubMedCentralGoogle Scholar
  13. Carvalho MD et al (2016) A new species of Neotropical freshwater stingray (Chondrichthyes: Potamotrygonidae) from the Rio Negro, Amazonas, Brazil: the smallest species of Potamotrygon. Zootaxa 4107:566CrossRefPubMedPubMedCentralGoogle Scholar
  14. Castex MN (1963) El género Potamotrygon en el Paraná Médio. Com. Mus. Prov. Cs. Nat. Florentino Ameghino 3:150Google Scholar
  15. CBD (2016) Convention on Biological Diversity, Millennium Ecosystem Assessment 2005. Accessed 18 Jun 2017
  16. Clavero M, García-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends Ecol Evol 20:110CrossRefPubMedPubMedCentralGoogle Scholar
  17. Coates P (2007) American perceptions of immigrant and invasive species: strangers on the land. University of California Press, BerkeleyGoogle Scholar
  18. Costa RS et al (2012) Variação temporal no rendimento e composição específica da pesca artesanal do Alto rio Paraná, PR–Brasil: os efeitos crônicos dos barramentos. Bol Inst Pesca 38:199–213Google Scholar
  19. Daga VS et al (2016) Non-native fish invasions of a Neotropical ecoregion with high endemism: a review of the Iguaçu River. Aquat Inv 11:209–223CrossRefGoogle Scholar
  20. Dechoum MS et al (2018) Citizen engagement in the management of non-native invasive pines: Does it make a difference? Biol Invasions 21:175–188CrossRefGoogle Scholar
  21. Devictor V, Whittaker RJ, Beltrame C (2010) Beyond scarcity: citizen science programmes as useful tools for conservation biogeography. Divers Distrib 16:354–362CrossRefGoogle Scholar
  22. Díaz S et al (2018) Assessing nature’s contributions to people: recognizing culture, and diverse sources of knowledge, can improve assessments. Science 359:270–272CrossRefGoogle Scholar
  23. Dudgeon D et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182CrossRefGoogle Scholar
  24. Frehse FA et al (2016) Non-native species and invasion biology in a megadiverse country: scientometric analysis and ecological interactions in Brazil. Biol Invasions 18:3713–3725CrossRefGoogle Scholar
  25. Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW, Smith MD, Holle BV (2007) The invasion paradox: reconciling pattern and process in speciesinvasions. Ecology 88:3–17CrossRefGoogle Scholar
  26. Galil BS et al (2015) Double trouble: the expansion of the Suez Canal and marine bioinvasions in the Mediterranean Sea. Biol Invasions 17:973–976CrossRefGoogle Scholar
  27. Garcia DAZ et al (2018) Introductions of non-native fishes into a heavily modified river: rates, patterns and management issues in the Paranapanema River (Upper Paraná ecoregion, Brazil). Biol Invasions 20:1229–1241CrossRefGoogle Scholar
  28. García-Berthou E et al (2005) Introduction pathways and establishment rates of invasive aquatic species in Europe. Can J Fish Aquat Sci 62:453–463CrossRefGoogle Scholar
  29. Garrone Neto D, Haddad Junior V (2010) Stingrays in rivers in southeastern Brazil: occurrence localities and impact on the population. Rev Soc Bras Med Trop 43:82–88CrossRefGoogle Scholar
  30. Garrone Neto D et al (2007) Registro de ocorrência de duas espécies de potamotrigonídeos na região do Alto Rio Paraná e algumas considerações sobre sua biologia. Biota Neotrop 7:1–4CrossRefGoogle Scholar
  31. Garrone-Neto D, Sazima I (2009) The more stirring the better: cichlid fishes associate with foraging potamotrygonid rays. Neotrop Ichthyol 7:499–501CrossRefGoogle Scholar
  32. Garrone-Neto D, Haddad V Jr, Gadig OBF (2014) Record of ascending passage of potamotrygonid stingrays through navigation locks: implications for the management of non-native species in the Upper Paraná River basin, southeastern Brazil. Manag Biol Invasions 5:113–119CrossRefGoogle Scholar
  33. Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19:470–474CrossRefGoogle Scholar
  34. Haddad Jr V (2000) Atlas de animais aquáticos perigosos do Brasil: guia médico de identificação e tratamento. São Paulo, Editora Roca, pp 10–24Google Scholar
  35. Haddad V Jr et al (2004) Freshwater stingrays: study of epidemiologic, clinic and therapeutic aspects based on 84 envenomings in humans and some enzymatic activities of the venom. Toxicon 43:287–294CrossRefGoogle Scholar
  36. Haddad V Jr et al (2012) Trauma and envenoming caused by stingrays and other fish in a fishing community in Pontal do Paranapanema, State of São Paulo, Brazil: epidemiology, clinical aspects, and therapeutic and preventive measures. Rev Soc Bras Med Trop 45:238–242CrossRefGoogle Scholar
  37. Heink U et al (2018) Different arguments, same conclusions: how is action against invasive alien species justified in the context of European policy? Biodiv Cons 27(7):1659–1677CrossRefGoogle Scholar
  38. Hoeinghaus DJ et al (2009) Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Cons Biol 23:1222–1231CrossRefGoogle Scholar
  39. IBAMA (2015) O uso da biodiversidade aquática no Brasil: uma avaliação com foco na pesca. Accessed 20 Mar 2018
  40. IBAMA (2017) Lista de peixes permitidos para pesca. Accessed 18 Mar 2018
  41. Johnson PTJ, Olden JD, Zanden MJV (2008) Dam invaders: impoundments facilitate biological invasions into freshwaters. Front Ecol Environ 6:357–363CrossRefGoogle Scholar
  42. Júlio-Jr HF, Tos CD, Agostinho AA, Pavanelli CS (2009) A massive invasion of fish species after eliminating a natural barrier in the upper Rio Paraná basin. Neotrop Ichthyol 7:709–718CrossRefGoogle Scholar
  43. Keller RP, Lodge DM, Lewis MA, Shogren JF (2009) Bioeconomics of invasive species: integrating ecology, economics, and management. Oxford University Press US, New YorkGoogle Scholar
  44. Langeani F et al (2007) Diversidade da ictiofauna do alto rio Paraná: composição atual e perspectivas futuras. Biota Neotrop 7:181–197CrossRefGoogle Scholar
  45. Lapointe NWR, Pendleton RM, Angermeier PL (2012) A comparison of approaches for estimating relative impacts of nonnative fishes. Environ Manag 49:82–95CrossRefGoogle Scholar
  46. Lepczyk CA (2005) Integrating published data and citizen science to describe bird diversity across a landscape. J Appl Ecol 42:672–677CrossRefGoogle Scholar
  47. Lepczyk CA et al (2009) Citizen science in ecology: the intersection of research and education. Bull Ecol Soc Am 90:308–317CrossRefGoogle Scholar
  48. Leprieur F, Beauchard O, Blanchet S, Oberdorff T, Brosse S (2008) Correction: fish invasions in the world's river systems: when natural processes are blurred by human activities. PLoS Biol 6(12):e322CrossRefPubMedPubMedCentralGoogle Scholar
  49. Loboda TS, Carvalho MR (2013) Systematic revision of the Potamotrygon motoro (Müller & Henle, 1841) species complex in the Paraná-Paraguay basin, with description of two new ocellated species (Chondrichthyes: Myliobatiformes: Potamotrygonidae). Neotrop Ichthyol 11:693–737CrossRefGoogle Scholar
  50. Lodge DM et al (2006) Biological invasions: recommendations for U.S. policy and management. Ecol Appl 16:2035–2054CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lövei GL (1997) Global change through invasion. Nature 388:627–628CrossRefGoogle Scholar
  52. Magalhães AL et al (2017) Small size today, aquarium dumping tomorrow: sales of juvenile non-native large fish as an important threat in Brazil. Neotrop Ichthyol 15(4):e170033CrossRefGoogle Scholar
  53. Makrakis S et al (2007) The Canal da Piracema at Itaipu dam as a fish pass system. Neotrop Ichthyol 5:185–195CrossRefGoogle Scholar
  54. Masood E (2018) Battle for the soul of biodiversity: an ideological clash could undermine a crucial assessment of the world’s disappearing plant and animal life. Nat News 560:423–425CrossRefGoogle Scholar
  55. Nakatani K et al (2004) Temporal and spatial dynamics of fish eggs and larvae. In: Thomaz SM, Agostinho AA, Hahn NS (eds) The upper Paraná River and its floodplain: physical aspects, ecology and conservation. Backhuys Publishers, Leiden, pp 293–308Google Scholar
  56. Okada EK, Agostinho AA, Gomes LC (2005) Spatial and temporal gradients in artisanal fisheries of a large Neotropical reservoir, the Itaipu Reservoir, Brazil. Can J Fish Aquat Sci 62:714–724CrossRefGoogle Scholar
  57. Olden JD, Douglas ME, Douglas MR (2005) The human dimensions of biotic homogenization. Conserv Biol 19:2036–2038CrossRefGoogle Scholar
  58. Olden JD et al (2010) Conservation biogeography of freshwater fishes: recent progress and future challenges. Divers Dist 16:496–513CrossRefGoogle Scholar
  59. Pelicice FM, Agostinho AA (2005) Perspectives on ornamental fisheries in the upper Paraná River floodplain, Brazil. Fish Res 72:109–119CrossRefGoogle Scholar
  60. Pelicice F, Agostinho AA (2008) Fish-passage facilities as ecological traps in large Neotropical rivers. Conserv Biol 22:180–188CrossRefPubMedPubMedCentralGoogle Scholar
  61. Pelicice FM, Agostinho AA (2009) Fish fauna destruction after the introduction of a non-native predator (Cichla kelberi) in a Neotropical reservoir. Biol Invasions 11(8):1789–1801CrossRefGoogle Scholar
  62. Pelicice FM et al (2018) Fish diversity in the cascade of reservoirs along the Paranapanema River, southeast Brazil. Neotrop Ichthyol 16(2):e170150CrossRefGoogle Scholar
  63. Queiroz-Sousa J, Brambilla EM, Garcia-Ayala JR et al (2018) Biology, ecology and biogeography of the South American silver croaker, an important Neotropical fish species in South America. Rev Fish Biol Fisher 28:693–714CrossRefGoogle Scholar
  64. Ricciardi A (2007) Are modern biological invasions an unprecedented form of global change? Conserv Biol 21:329–336CrossRefGoogle Scholar
  65. Rodewald AD (2012) `Spreading messages about invasives. Divers Dist 18:97–99CrossRefGoogle Scholar
  66. Santos NCL et al (2017) Environmental filters predict the trait composition of fish communities in reservoir cascades. Hydrobiologia 802(1):245–253CrossRefGoogle Scholar
  67. Santos DA, Hoeinghaus DJ, Gomes LC (2018) Spatial scales and the invasion paradox: a test using fish assemblages in a Neotropical floodplain. Hydrobiologia 817(1):121–131CrossRefGoogle Scholar
  68. Saunders DL, Meeuwig JJ, Vincent ACJ (2002) Freshwater protected areas: strategies for conservation. Conserv Biol 16:30–41CrossRefGoogle Scholar
  69. Schlaepfer MA, Sax DF, Olden JD (2011) The potential conservation value of non-native species. Conserv Biol 25:428–437CrossRefGoogle Scholar
  70. Severi W, Cordeiro AAM (1994) Catálogo de peixes da bacia do rio Iguaçu. GTZ, IAP, p 118pGoogle Scholar
  71. Sharpe DMT, De León LF, González R, Torchin ME (2017) Tropical fish community does not recover 45 years after predator introduction. Ecology 98(2):412–424CrossRefGoogle Scholar
  72. Silva TB, Uieda VS (2007) Preliminary data on the feeding habits of the freshwater stingrays Potamotrygon falkneri and Potamotrygon motoro (Potamotrygonidae) from the Upper Paraná River basin, Brazil. Biota Neotrop 7(1):221–226CrossRefGoogle Scholar
  73. Simberloff D (2006) Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol Lett 9:912–919CrossRefGoogle Scholar
  74. Simberloff D (2013) Biological invasions: much progress plus several controversies. Contrib Sci 9:7–16Google Scholar
  75. Simberloff D, Vitule JRS (2014) A call for an end to calls for the end of invasion biology. Oikos 123:408–413CrossRefGoogle Scholar
  76. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32CrossRefGoogle Scholar
  77. Simberloff D et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66CrossRefGoogle Scholar
  78. Skóra F et al (2015) Darwin’s hypotheses to explain colonization trends: evidence from a quasi-natural experiment and a new conceptual model. Divers Distrib 21:583–594CrossRefGoogle Scholar
  79. Stohlgren TJ, Barnett DT, Kartesz JT (2003) The rich get richer: patterns of plant invasions in the United States. Frontiers Ecol Environ 1:11–14CrossRefGoogle Scholar
  80. Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J N Am Benthol Soc 29:344–358CrossRefGoogle Scholar
  81. Stromberg JC, Chew MK, Nagler PL, Glenn EP (2009) Changing perceptions of change: the role of scientists in Tamarix and river management. Restor Ecol 17:177–186CrossRefGoogle Scholar
  82. Suzuki HI et al (2004) Reproductive ecology of the fish assemblages. In: Thomaz SM, Agostinho AA, Hahn NS (eds) The upper Paraná River and its floodplain: physical aspects, ecology and conservation. Backhuys Publishers, Leiden, pp 271–291Google Scholar
  83. The Aichi Biodiversity Targets (2012). Accessed 23 Feb 2018
  84. Twardochleb LA, Olden JD (2016) Non-native Chinese mystery snail (Bellamya chinensis) supports consumers in urban lake food webs. Ecosphere 7(5):e01293CrossRefGoogle Scholar
  85. Vitule JRS, Freire CA, Simberloff D (2009) Introduction of non-native freshwater fish can certainly be bad. Fish Fisheries 10:98–108CrossRefGoogle Scholar
  86. Vitule JRS, Skóra F, Abilhoa V (2012a) Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Divers Distrib 18:111–120CrossRefGoogle Scholar
  87. Vitule JRS et al (2012b) Revisiting the potential conservation value of non-native species. Conserv Biol 26:1153–1155CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wilson JRU et al (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144CrossRefGoogle Scholar
  89. Zawadzki CH, Renesto E, Bini LM (1999) Genetic and morphometric analysis of three species of the genus Hypostomus Lacépède, 1803 (Osteichthyes: loricariidae) from the Rio Iguaçu basin (Brazil). Rev Suisse Zool 106:91–105CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Programa de pós-graduação em Ecologia de Ambientes Aquáticos Continentais (PEA)Universidade Estadual de MaringáMaringáBrazil
  2. 2.UNICESUMAR – Centro Universitário de MaringáMaringáBrazil
  3. 3.Laboratório de EcologiaUniversidade Tecnológica Federal do ParanáPonta GrossaBrazil
  4. 4.Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia), Departamento de Biologia, PEAUniversidade Estadual de MaringáMaringáBrazil
  5. 5.Centro de Estudos do MarUniversidade Federal do ParanáPontal do ParanáBrazil
  6. 6.Laboratório de Ecologia e Conservação, Departamento de Engenharia Ambiental, Setor de TecnologiaUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations