Advertisement

Biological Invasions

, Volume 21, Issue 10, pp 2997–3012 | Cite as

Alien plants, animals, fungi and algae in Norway: an inventory of neobiota

  • Hanno SandvikEmail author
  • Dag Dolmen
  • Reidar Elven
  • Tone Falkenhaug
  • Elisabet Forsgren
  • Haakon Hansen
  • Kristian Hassel
  • Vivian Husa
  • Gaute Kjærstad
  • Frode Ødegaard
  • Hans Christian Pedersen
  • Halvor Solheim
  • Bård Gunnar Stokke
  • Per Arvid Åsen
  • Sandra Åström
  • Tor-Erik Brandrud
  • Hallvard Elven
  • Anders Endrestøl
  • Anders Finstad
  • Stein Fredriksen
  • Øivind Gammelmo
  • Jan Ove Gjershaug
  • Bjørn Gulliksen
  • Inger Hamnes
  • Bjørn Arild Hatteland
  • Hanne Hegre
  • Trygve Hesthagen
  • Anders Jelmert
  • Thomas C. Jensen
  • Stein Ivar Johnsen
  • Egil Karlsbakk
  • Christer Magnusson
  • Kjell Nedreaas
  • Björn Nordén
  • Eivind Oug
  • Oddvar Pedersen
  • Per Anker Pedersen
  • Kjersti Sjøtun
  • Jon Kristian Skei
  • Heidi Solstad
  • Leif Sundheim
  • Jon E. Swenson
  • Per Ole Syvertsen
  • Venche Talgø
  • Vigdis Vandvik
  • Kristine B. Westergaard
  • Rupert Wienerroither
  • Bjørnar Ytrehus
  • Olga Hilmo
  • Snorre Henriksen
  • Lisbeth Gederaas
Alien Floras and Faunas 4

Abstract

We present the results of an inventory and status assessment of alien species in Norway. The inventory covered all known multicellular neobiota, 2496 in total, 1039 of which were classified as naturalised. The latter constitute c. 3% of all species known to be stably reproducing in Norway. These figures are higher than expected from Norway’s latitude, which may be due a combination of climatic and historical factors, as well as sampling effort. Most of the naturalised neobiota were plants (71%), followed by animals (21%) and fungi (8%). The main habitat types colonised were open lowlands (79%), urban environments (52%) and woodlands (42%). The main areas of origin were Europe (67%), North America (15%) and Asia (13%). For most taxa, the rate of novel introductions seems to have been increasing during recent decades. Within Norway, the number of alien species recorded per county was negatively correlated with latitude and positively correlated with human population density. In the high-Arctic territories under Norwegian sovereignty, i.e. Svalbard and Jan Mayen, 104 alien species were recorded, of which 5 were naturalised.

Keywords

Alien species Casual species Naturalised species Neomycetes Neophytes Neozoa 

Notes

Acknowledgements

We are grateful to Pål Adolfsen, Helge Bardal (Norwegian Veterinary Institute), Henrik H. Berntsen (Norwegian Institute for Nature Research), Otte Bjelland, Jan H. Sundet (Institute of Marine Research), Kristina Bjureke, Geir Søli (Natural History Museum), Preben S. Ottesen (Norwegian Institute of Public Health), Mikael Svensson (Swedish Species Information Centre) and Eva Vike (Norwegian University of Life Sciences) for help with the inventory.

Authors' Contributions

LG was project leader and organised the inventory; HSa, OH and LG prepared the guidelines; DD, RE, TF, EF, HHa, KH, VH, GK, FØ, HCP, HaSo and BGS headed the expert committees that carried out the inventories; PAÅ, SÅ, T-EB, HE, AE, AF, SF, ØG, JOG, BG, IH, BAH, HHe, TH, AJ, TCJ, SIJ, EK, CM, KN, BN, EO, OP, PAP, KS, JKS, HeSo, LS, JES, POS, VT, VV, KBW, RW and BY were members of these expert committees; OH and LG assisted the expert committees in their work; HSa analysed the data with input from SH, OH and VV; HSa wrote the article with input from the remaining authors.

Funding

The inventory was financed by the Norwegian Biodiversity Information Centre.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10530_2019_2058_MOESM1_ESM.xlsx (562 kb)
Online Resource 1: Species inventory (XLSX 563 kb)
10530_2019_2058_MOESM2_ESM.pdf (74 kb)
Online Resource 2: Naturalised neobiota in Norwegian counties and European countries (PDF 74 kb)

References

  1. ArtDatabanken, Artsdatabanken (2017) The Swedish and Norwegian Taxonomy initiatives—collaborating to survey and describe the biodiversity. https://www.biodiversity.no/Pages/236511. Accessed 24 Oct 2018
  2. Artsdatabanken (2012) Fremmede arter i Norge. http://databank.artsdatabanken.no/FremmedArt2012. Accessed 24 Oct 2018
  3. Artsdatabanken (2018) Fremmedartslista 2018. https://www.artsdatabanken.no/fremmedartslista2018. Accessed 24 Oct 2018
  4. Artsdatabanken (2019) Artsnavnebasen. Norsk taksonomisk database [Species Nomenclature Database]. http://www2.artsdatabanken.no/artsnavn/Contentpages/Hjem.aspx. Accessed 12 Feb 2019
  5. Artsdatabanken, GBIF Norway (2018) Artskart [Species Map]. https://artskart.artsdatabanken.no. Accessed 24 Oct 2018
  6. Artsdatabanken, Sabima, NOF et al (2018) Artsobservasjoner. Rapporteringssystem for arter [Species Observation System]. https://www.artsobservasjoner.no. Accessed 24 Oct 2018
  7. Blackburn TM, Pyšek P, Bacher S et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339.  https://doi.org/10.1016/j.tree.2011.03.023 CrossRefGoogle Scholar
  8. Blackburn TM, Essl F, Evans T et al (2014) A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol 12:e1001850.  https://doi.org/10.1371/journal.pbio.1001850 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  10. Capdevila Argüelles L, Iglesias García Á, Orueta y Bernardo Zilleti JF (2006) Especies exóticas invasoras: diagnóstico y bases para la prevención y el manejo. Ministerio de Medio Ambiente, MadridGoogle Scholar
  11. Dawson W, Moser D, van Kleunen M et al (2017) Global hotspots and correlates of alien species richness across taxonomic groups. Nat Ecol Evol 1:0186.  https://doi.org/10.1038/s41559-017-0186 CrossRefGoogle Scholar
  12. de Almeida JD (2012) Flora exótica subespontânea de Portugal continental (plantas vasculares). Catálogo das plantas vasculares exóticas que ocorrem subespontâneas em Portugal continental e compilação de informações sobre estas plantas, 5th edn. Universidade de Coimbra, CoimbraGoogle Scholar
  13. Dhont B, Vanderhoeven S, Roelandt S et al (2015) Harmonia+ and Pandora+: risk screening tools for potentially invasive plants, animals and their pathogens. Biol Invasions 17:1869–1883.  https://doi.org/10.1007/s10530-015-0843-1 CrossRefGoogle Scholar
  14. Dodd AJ, McCarthy MA, Ainsworth N, Burgman MA (2016) Identifying hotspots of alien plant naturalisation in Australia: approaches and predictions. Biol Invasions 18:631–645.  https://doi.org/10.1007/s10530-015-1035-8 CrossRefGoogle Scholar
  15. Dullinger I, Wessely J, Bossdorf O et al (2017) Climate change will increase the naturalization risk from garden plants in Europe. Glob Ecol Biogeogr 26:43–53.  https://doi.org/10.1111/geb.12512 CrossRefPubMedGoogle Scholar
  16. Elton CS (1958) The ecology of invasions by animals and plants. Wiley, New YorkCrossRefGoogle Scholar
  17. Essl F, Rabitsch W (eds) (2002) Neobiota in Österreich. Umweltbundesamt, WienGoogle Scholar
  18. Essl F, Nehring S, Klingenstein F, Milasowszky N, Nowack C, Rabitsch W (2011) Review of risk assessment systems of IAS in Europe and introducing the German-Austrian Black List Information System (GABLIS). J Nat Conserv 19:339–350.  https://doi.org/10.1016/j.jnc.2011.08.005 CrossRefGoogle Scholar
  19. Fridley JD, Stachowicz JJ, Naeem S et al (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3–17.  https://doi.org/10.1890/0012-9658(2007)88[3:TIPRPA]2.0.CO;2 CrossRefPubMedGoogle Scholar
  20. Gederaas L, Salvesen I, Viken Å (eds) (2007) Norsk svarteliste 2007 – økologiske risikovurderinger av fremmede arter. Artsdatabanken, TrondheimGoogle Scholar
  21. Gederaas L, Moen TL, Sandmark H, Skjelseth S (eds) (2013) Alien species in Norway: with the Norwegian Black List 2012. Norwegian Biodiversity Information Centre, TrondheimGoogle Scholar
  22. Halvorsen R et al (2016) NiN – typeinndeling og beskrivelsessystem for natursystemnivået. Natur i Norge, artikkel 3, versjon 2.1.0. http://artsdatabanken.no/Files/14539. Accessed 24 Oct 2018
  23. Iacarella JC, Dick JTA, Alexander ME, Ricciardi A (2015) Ecological impacts of invasive alien species along temperature gradients: testing the role of environmental matching. Ecol Appl 25:706–716.  https://doi.org/10.1890/14-0545.1 CrossRefPubMedGoogle Scholar
  24. IUCN [International Union for Conservation of Nature] (2012) Guidelines for application of IUCN Red List criteria at regional and national levels, version 4.0. IUCN, GlandGoogle Scholar
  25. IUCN [World Conservation Union] (2000) IUCN guidelines for the prevention of biodiversity loss caused by alien invasive species. IUCN, GlandGoogle Scholar
  26. Katsanevakis S, Gatto F, Zenetos A, Cardoso AC (2013) How many marine aliens in Europe? Manag Biol Invasions 4:37–42.  https://doi.org/10.3391/mbi.2013.4.1.05 CrossRefGoogle Scholar
  27. KLD [Royal Norwegian Ministry of Climate and Environment] (2015a) Natur for livet. Norsk handlingsplan for naturmangfold. Meld Storting 2015–2016(14):1–155Google Scholar
  28. KLD [Royal Norwegian Ministry of Climate and Environment] (2015b) Forskrift om fremmede organismer. Nor Lovtid I 2015:1132–1164Google Scholar
  29. Lambdon PW, Pyšek P, Basnou C et al (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149Google Scholar
  30. Lembrechts JJ, Pauchard A, Lenoir J et al (2016) Disturbance is the key to plant invasions in cold environments. Proc Natl Acad Sci USA 113:14061–14066.  https://doi.org/10.1073/pnas.1608980113 CrossRefPubMedGoogle Scholar
  31. Medvecká J, Kliment J, Májeková J et al (2012) Inventory of the alien flora of Slovakia. Preslia 54:257–309Google Scholar
  32. Nehring S, Kowarik I, Rabitsch W, Essl F (2013) Naturschutzfachliche Invasivitätsbewertungen für in Deutschland wild lebende gebietsfremde Gefäßpflanzen. BfN Skr 352:1–202Google Scholar
  33. Nehring S, Rabitsch W, Kowarik I, Essl F (2015) Naturschutzfachliche Invasivitätsbewertungen für in Deutschland wild lebende gebietsfremde Wirbeltiere. BfN Skr 409:1–222Google Scholar
  34. NOBANIS [European Network on Invasive Alien Species] (2018) Gateway to information on invasive alien species in North and Central Europe. http://www.nobanis.org. Accessed 24 Oct 2018
  35. Olsen SL, Åström J, Hendrichsen D et al (2017) Fremmede karplanter i Norge: modellering av introduksjonsområder og nåværende utbredelse. NINA Rapp 1393:1–116Google Scholar
  36. Preston CD, Pearman DA, Hall AR (2004) Archaeophytes in Britain. Bot J Linn Soc 145:257–294.  https://doi.org/10.1111/j.1095-8339.2004.00284.x CrossRefGoogle Scholar
  37. Pyšek P, Richardson DM (2006) The biogeography of naturalization in alien plants. J Biogeogr 33:2040–2050.  https://doi.org/10.1111/j.1365-2699.2006.01578.x CrossRefGoogle Scholar
  38. Pyšek P, Sádlo J, Mandák B (2002) Catalogue of alien plants of the Czech Republic. Preslia 74:97–186Google Scholar
  39. Pyšek P, Richardson DM, Rejmánek M, Webster GL, Williamson M, Kirschner J (2004) Alien plants in checklists and floras: towards a better communication between taxonomists and ecologists. Taxon 53:131–143.  https://doi.org/10.2307/4135498 CrossRefGoogle Scholar
  40. Pyšek P, Danihelka J, Sádlo J et al (2012) Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Preslia 84:155–255Google Scholar
  41. Pyšek P, Pergl J, Essl F et al (2017) Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89:203–274.  https://doi.org/10.23855/preslia.2017.203 CrossRefGoogle Scholar
  42. Pyšek P, Meyerson LA, Simberloff D (2018) Introducing “Alien Floras and Faunas”, a new series in Biological Invasions. Biol Invasions 20:1375–1376.  https://doi.org/10.1007/s10530-017-1648-1 CrossRefGoogle Scholar
  43. R Core Team (2017) R: a language and environment for statistical computing, version 3.3.3. R Foundation for Statistical Computing, Wien. http://www.r-project.org. Accessed 21 Mar 2017
  44. Rabitsch W, Essl W (2006) Biological invasions in Austria: patterns and case studies. Biol Invasions 8:295–308.  https://doi.org/10.1007/s10530-004-7890-3 CrossRefGoogle Scholar
  45. Rabitsch W, Nehring S (2017) Naturschutzfachliche Invasivitätsbewertungen für in Deutschland wild lebende gebietsfremde aquatische Pilze, Niedere Pflanzen und Wirbellose Tiere. BfN Skr 458:1–220Google Scholar
  46. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107.  https://doi.org/10.1046/j.1472-4642.2000.00083.x CrossRefGoogle Scholar
  47. Ries C, Krippel Y, Pfeiffenschneider M, Schneider S (2013) Environmental impact assessment and black, watch and alert list classification after the ISEIA protocol of non-native vascular plant species in Luxembourg. Bull Soc Nat Luxemb 114:15–21Google Scholar
  48. Ries C, Pfeiffenschneider M, Engel E, Heidt J-C, Lauff M (2014) Environmental impact assessment and black, watch and alert list classification after the ISEIA protocol of vertebrates in Luxembourg. Bull Soc Nat Luxemb 115:195–201Google Scholar
  49. Sandvik H, Hilmo O, Finstad AG et al (2019) Generic ecological impact assessment of alien species (GEIAA): the third generation of assessments in Norway. Biol Invasions.  https://doi.org/10.1007/s10530-019-02033-6 CrossRefGoogle Scholar
  50. Sax DF (2001) Latitudinal gradients and geographic ranges of exotic species: implications for biogeography. J Biogeogr 28:139–150.  https://doi.org/10.1046/j.1365-2699.2001.00536.x CrossRefGoogle Scholar
  51. Seebens H, Blackburn TM, Dyer EE et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435.  https://doi.org/10.1038/ncomms14435 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sharma GP, Esler KJ, Blignaut JN (2010) Determining the relationship between invasive alien species density and a country’s socio-economic status. S Afr J Sci 106:113.  https://doi.org/10.4102/sajs.v106i3/4.113 CrossRefGoogle Scholar
  53. Staub R (2006) Neobiota im Fürstentum Liechtenstein. Ber Bot Zool Ges Liecht Sargans Werdenb 32:89–151Google Scholar
  54. Strand M, Aronsson M, Svensson M (2018) Klassificering av främmande arters effekter på biologisk mångfald i Sverige – ArtDatabankens risklista. ArtDatabanken Rapp 21:1–45Google Scholar
  55. Tilman D (1997) Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78:81–92.  https://doi.org/10.1890/0012-9658(1997)078[0081:CIRLAG]2.0.CO;2 CrossRefGoogle Scholar
  56. Vinogradova Y, Pergl J, Essl F et al (2018) Invasive alien plants of Russia: insights from regional inventories. Biol Invasions 20:1931–1943.  https://doi.org/10.1007/s10530-018-1686-3 CrossRefGoogle Scholar
  57. Wittenberg R, Kenis M, Blick T, Hänggi A, Gassmann A, Weber E (2006) Invasive alien species in Switzerland: an inventory of alien species and their threat to biodiversity and economy in Switzerland. Federal Office for the Environment, BernGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hanno Sandvik
    • 1
    • 2
    Email author
  • Dag Dolmen
    • 3
  • Reidar Elven
    • 4
  • Tone Falkenhaug
    • 5
  • Elisabet Forsgren
    • 1
  • Haakon Hansen
    • 6
  • Kristian Hassel
    • 3
  • Vivian Husa
    • 5
  • Gaute Kjærstad
    • 3
  • Frode Ødegaard
    • 1
    • 3
  • Hans Christian Pedersen
    • 1
  • Halvor Solheim
    • 7
  • Bård Gunnar Stokke
    • 1
  • Per Arvid Åsen
    • 8
  • Sandra Åström
    • 1
  • Tor-Erik Brandrud
    • 1
  • Hallvard Elven
    • 4
  • Anders Endrestøl
    • 1
  • Anders Finstad
    • 3
  • Stein Fredriksen
    • 9
  • Øivind Gammelmo
    • 10
  • Jan Ove Gjershaug
    • 1
  • Bjørn Gulliksen
    • 11
  • Inger Hamnes
    • 6
  • Bjørn Arild Hatteland
    • 7
    • 12
  • Hanne Hegre
    • 13
  • Trygve Hesthagen
    • 1
  • Anders Jelmert
    • 5
  • Thomas C. Jensen
    • 1
  • Stein Ivar Johnsen
    • 1
  • Egil Karlsbakk
    • 5
    • 12
  • Christer Magnusson
    • 7
  • Kjell Nedreaas
    • 5
  • Björn Nordén
    • 1
  • Eivind Oug
    • 14
  • Oddvar Pedersen
    • 4
  • Per Anker Pedersen
    • 15
  • Kjersti Sjøtun
    • 12
  • Jon Kristian Skei
    • 16
  • Heidi Solstad
    • 4
  • Leif Sundheim
    • 7
  • Jon E. Swenson
    • 1
    • 15
  • Per Ole Syvertsen
    • 17
  • Venche Talgø
    • 7
  • Vigdis Vandvik
    • 12
  • Kristine B. Westergaard
    • 1
  • Rupert Wienerroither
    • 5
  • Bjørnar Ytrehus
    • 1
  • Olga Hilmo
    • 2
  • Snorre Henriksen
    • 2
  • Lisbeth Gederaas
    • 2
  1. 1.Norwegian Institute for Nature Research (NINA)TrondheimNorway
  2. 2.Norwegian Biodiversity Information CentreTrondheimNorway
  3. 3.NTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
  4. 4.Natural History MuseumUniversity of OsloOsloNorway
  5. 5.Institute of Marine ResearchBergenNorway
  6. 6.Norwegian Veterinary InstituteOsloNorway
  7. 7.Norwegian Institute of Bioeconomy Research (NIBIO)ÅsNorway
  8. 8.Natural History Museum and Botanical GardenUniversity of AgderKristiansandNorway
  9. 9.Department of BiosciencesUniversity of OsloOsloNorway
  10. 10.BioFokusOsloNorway
  11. 11.Department of Arctic and Marine BiologyArctic University of Norway (UiT)TromsøNorway
  12. 12.Department of Biological SciencesUniversity of BergenBergenNorway
  13. 13.FlowerPowerOsloNorway
  14. 14.Norwegian Institute for Water Research (NIVA)GrimstadNorway
  15. 15.Norwegian University of Life Sciences (NMBU)ÅsNorway
  16. 16.Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
  17. 17.Natural History DepartmentHelgeland MuseumMo i RanaNorway

Personalised recommendations