Non-native ungulates indirectly impact foliar arthropods but not soil function

  • Mariano A. Rodriguez-CabalEmail author
  • M. Noelia Barrios-Garcia
  • Christopher J. Greyson-Gaito
  • Heather L. Slinn
  • M. Paz Tapella
  • Agustín Vitali
  • Gregory M. Crutsinger
Original Paper


One of the greatest challenges in contemporary ecology is to understand how the homogenization of biodiversity at all levels of organization and spatial scales will influence the assembly of communities and the functioning of ecosystems. Such homogenization can occur through the gain of non-native species and the loss of native species. Here, we show that by disrupting a keystone mutualistic interaction, non-native ungulates indirectly impact foliar arthropod abundance and richness, but not soil properties (soil respiration, temperature and humidity), in a temperate forest of Patagonia. The results of this study show that the gain of non-native ungulates and the loss of a key interaction can trigger unnoticed cascading effects. Our findings highlight the importance of assessing biodiversity not only as the sum of different components but also through the direct and indirect interactions among them.


Arthropod community Indirect effects Introduced herbivores Keystone interactions Soil microbes 



We thank staff of Nahuel Huapi National Park and Los Arrayanes National Park, D. Mujica and C. Chehebar for logistic support and permission to carry out fieldwork. We also thank the Editor and three anonymous reviewers for useful comments and suggestions. Special thanks go to Ezequiel Rodriguez-Cabal and Greg Crutsinger who made the drawings. This research was supported with a grant from “Agencia Nacional de Promoción Científica y Tecnológica” of Argentina (PICT 2014-2484) to MARC.


  1. Aizen MA (2003) The relative influence of animal pollination and seed dispersal on flowering time in a winter flowering mistletoe. Ecology 84:2613–2627CrossRefGoogle Scholar
  2. Aizen MA, Ezcurra C (1998) High incidence of plant-animal mutualisms in the woody flora of the temperate forest of southern South America: biogeographical origin and present ecological significance. Ecol Austral 8:217–236Google Scholar
  3. Allison SD (2006) Brown ground: a soil carbon analogue for the green world hypothesis? Am Nat 167:619–627CrossRefGoogle Scholar
  4. Amico GC, Aizen MA (2000) Ecology: mistletoe seed dispersal by a marsupial. Nature 408:929CrossRefGoogle Scholar
  5. Amico GC, Rodriguez-Cabal MA, Aizen MA (2009) The potential key seed-dispersing role of the arboreal marsupial Dromiciops gliroides. Acta Oecol 35:8–13CrossRefGoogle Scholar
  6. Armesto J, Rozzi R (1989) Seed dispersal syndromes in the rain forest of Chiloé: evidence for the importance of biotic dispersal in a temperate rain forest. J Biogeogr 16(3):219–226CrossRefGoogle Scholar
  7. Bailey JK, Whitham TG (2002) Interactions among fire, aspen, and elk affect insect diversity: reversal of a community response. Ecology 83:1701–1712CrossRefGoogle Scholar
  8. Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press, OxfordGoogle Scholar
  9. Barrios-Garcia MN, Relva MA, Kitzberger T (2012) Patterns of use and damage by exotic deer on native plant communities in northwestern Patagonia. Eur J Wildl Res 58:137–146CrossRefGoogle Scholar
  10. Borer ET, Halpern BS, Seabloom EW (2006) Asymmetry in community regulation: effects of predators and productivity. Ecology 87:2813–2820CrossRefGoogle Scholar
  11. Cabrera LA (1976) Regiones Fitogeográficas Argentinas. ACME, Buenos AiresGoogle Scholar
  12. Cavieres LA, Badano EI (2009) Do facilitative interactions increase species richness at the entire community level? J Ecol 97:1181–1191CrossRefGoogle Scholar
  13. Chen D, Zheng S, Shan Y, Taube F, Bai Y (2013) Vertebrate herbivore-induced changes in plants and soils: linkages to ecosystem functioning in a semi-arid steppe. Funct Ecol 27:273–281CrossRefGoogle Scholar
  14. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18:117–143CrossRefGoogle Scholar
  15. Clarke K, Gorley R (2006) PRIMER, v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  16. Cornelissen JS, Lavorel E, Garnier Diaz S, Buchmann N, Gurvich D, Reich P, Ter Steege H, Morgan H, Van Der Heijden M (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380CrossRefGoogle Scholar
  17. Côté SD, Rooney TP, Tremblay JP, Dussault C, Waller DM (2004) Ecological impacts of deer overabundance. Annu Rev Ecol Evol Syst 35:113–147CrossRefGoogle Scholar
  18. Crawley MJ (1986) The population biology of invaders. Philos Trans R Soc Lond B 314:711–731CrossRefGoogle Scholar
  19. Crooks KR, Soulé ME (1999) Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400:563CrossRefGoogle Scholar
  20. Cuevas-Reyes P, Pérez-López G, Maldonado-López Y, González-Rodríguez A (2017) Effects of herbivory and mistletoe infection by Psittacanthus calyculatus on nutritional quality and chemical defense of Quercus deserticola along Mexican forest fragments. Plant Ecol 218:687–697CrossRefGoogle Scholar
  21. Danell K, Huss-Danell K (1985) Feeding by insects and hares on birches earlier affected by moose browsing. Oikos 44:75–81CrossRefGoogle Scholar
  22. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JB (2011) Trophic downgrading of planet Earth. Science 333:301–306CrossRefGoogle Scholar
  23. Findlay S, Carreiro M, Krischik V, Jones CG (1996) Effects of damage to living plants on leaf litter quality. Ecol Appl 6:269–275CrossRefGoogle Scholar
  24. Fukami T, Wardle DA, Bellingham PJ, Mulder CPH, Towns DR, Yeates GW, Bonner KI, Durrett MS, Grant-Hoffman MA, Williamson WM (2006) Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol Lett 9:1299–1307CrossRefGoogle Scholar
  25. Gill RMA (1992) A review of damage by mammals in north temperate forest: 3. Impact on trees and forests. Forestry 65:363–388CrossRefGoogle Scholar
  26. Gish M, Ben-Ari M, Inbar M (2017) Direct consumptive interactions between mammalian herbivores and plant-dwelling invertebrates: prevalence, significance, and prospectus. Oecologia 183:347–352CrossRefGoogle Scholar
  27. Gross K (2008) Positive interactions among competitors can produce species-rich communities. Ecol Lett 11:929–936CrossRefGoogle Scholar
  28. Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor Popul Biol 12:197–229CrossRefGoogle Scholar
  29. Jacksic F, Iriarte JA, Jimenez JA, Martinez DR (2002) Invaders without frontiers: cross-border invasions of exotic mammals. Biol Invasions 4:157–173CrossRefGoogle Scholar
  30. Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  31. Kaspari M, Yanoviak SP (2009) Biogeochemistry and the structure of tropical brown food webs. Ecology 90:3342–3351CrossRefGoogle Scholar
  32. Mack MC, D’Antonio CM (1998) Impacts of biological invasions on disturbance regimes. Trends Ecol Evol 13:195–198CrossRefGoogle Scholar
  33. Martinsen GD, Driebe EM, Whitham TG (1998) Indirect interactions mediated by changing plant chemistry: beaver browsing benefits beetles. Ecology 79:192–200CrossRefGoogle Scholar
  34. McNaughton S (1983) Compensatory plant growth as a response to herbivory. Oikos 40:329–336CrossRefGoogle Scholar
  35. Mooney HA (2010) The ecosystem-service chain and the biological diversity crisis. Philos Trans R Soc Lond B Biol Sci 365:31–39CrossRefGoogle Scholar
  36. Moore JC, Berlow EL, Coleman DC, Ruiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melville K, Morin PD (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600CrossRefGoogle Scholar
  37. Nuñez MA, Bailey JK, Schweitzer JA (2010) Population, community and ecosystem effects of exotic herbivores: a growing global concern. Biol Invasions 12:297–301CrossRefGoogle Scholar
  38. Nuttle T, Yerger EH, Stoleson SH, Ristau TE (2011) Legacy of top-down herbivore pressure ricochets back up multiple trophic levels in forest canopies over 30 years. Ecosphere 2:1–11CrossRefGoogle Scholar
  39. Ohgushi T (2005) Indirect interaction webs: herbivore-induced effects through trait change in plants. Annu Rev Ecol Evol Syst 36:81–105CrossRefGoogle Scholar
  40. Pastor J, Dewey B, Naiman RJ, McInnes PF, Cohen Y (1993) Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology 74:467–480CrossRefGoogle Scholar
  41. Peay KG, Schubert MG, Nguyen NH, Bruns TD (2012) Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol 21:4122–4136CrossRefGoogle Scholar
  42. Persson IL, Nilsson MB, Pastor J, Eriksson T, Bergström R, Danell K (2009) Depression of belowground respiration rates at simulated high moose population densities in boreal forests. Ecology 90:2724–2733CrossRefGoogle Scholar
  43. Press MC, Phoenix GK (2005) Impacts of parasitic plants on natural communities. New Phytol 166:737–751CrossRefGoogle Scholar
  44. Pringle RM, Young TP, Rubenstein DI, McCauley DJ (2007) Herbivore-initiated interaction cascades and their modulation by productivity in an African savanna. Proc Natl Acad Sci 104:193–197CrossRefGoogle Scholar
  45. Quested HM, Cornelissen JHC, Press MC, Callaghan TV, Aerts R, Trosien F, Riemann P, Gwynn-Jones D, Kondratchuk A, Jonasson SE (2003) Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84:3209–3221CrossRefGoogle Scholar
  46. Rodriguez-Cabal MA, Barrios-Garcia MN, Amico GC, Aizen MA, Sanders NJ (2013) Node-by-node disassembly of a mutualistic interaction web driven by species introductions. Proc Natl Acad Sci 110:16503–16507CrossRefGoogle Scholar
  47. Schmitz OJ, Hambäck PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am Nat 155:141–153CrossRefGoogle Scholar
  48. Schöb C, Armas C, Guler M, Prieto I, Pugnaire FI (2013) Variability in functional traits mediates plant interactions along stress gradients. J Ecol 101:753–762CrossRefGoogle Scholar
  49. Shurin JB, Borer ET, Seabloom EW, Anderson K, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2002) A cross-ecosystem comparison of the strength of trophic cascades. Ecol Lett 5:785–791CrossRefGoogle Scholar
  50. Stireman J, Dyer LA, Janzen DH, Singer M, Lill J, Marquis RJ, Ricklefs RE, Gentry G, Hallwachs W, Coley PD (2005) Climatic unpredictability and parasitism of caterpillars: implications of global warming. Proc Natl Acad Sci USA 102:17384–17387CrossRefGoogle Scholar
  51. Strauss SY (1991) Indirect effects in community ecology: their definition, study and importance. Trends Ecol Evol 6:206–210CrossRefGoogle Scholar
  52. Terborgh J, Lopez L, Nuñez P, Rao M, Shahabuddin G, Orihuela G, Riveros M, Ascanio R, Adler GH, Lambert TD (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926CrossRefGoogle Scholar
  53. Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216CrossRefGoogle Scholar
  54. van der Putten W (2012) Climate change, aboveground-belowground interactions, and species range shifts. Annu Rev Ecol Evol Syst 43:365–383CrossRefGoogle Scholar
  55. van der Wal R, van Lieshout SM, Loonen MJ (2001) Herbivore impact on moss depth, soil temperature and arctic plant growth. Polar Biol 24:29–32CrossRefGoogle Scholar
  56. van Klink R, van der Plas F, Van Noordwijk C, WallisDeVries MF, Olff H (2015) Effects of large herbivores on grassland arthropod diversity. Biol Rev 90:347–366CrossRefGoogle Scholar
  57. Vanbergen AJ, Hails R, Watt A, Jones TH (2006) Consequences for host–parasitoid interactions of grazing-dependent habitat heterogeneity. J Anim Ecol 75:789–801CrossRefGoogle Scholar
  58. Vázquez DP (2002) Multiple effects of introduced mammalian herbivores in a temperate forest. Biol Invasions 4:175–191CrossRefGoogle Scholar
  59. Vázquez DP, Simberloff D (2004) Indirect effects of an introduced ungulate on pollination and plant reproduction. Ecol Monogr 74:281–308CrossRefGoogle Scholar
  60. Veblen TT, Mermoz M, Martin C, Ramilo E (1989) Effects of exotic deer on forest regeneration and composition in Northern Patagonia. J Appl Ecol 26:711–724CrossRefGoogle Scholar
  61. Veblen TT, Mermoz M, Martin C, Kitzberger T (1992) Ecological impacts of introduced animals in Nahuel Huapi Nationa Park, Argentina. Conserv Biol 6:71–83CrossRefGoogle Scholar
  62. Wardle DA, Bonner KI, Barker GM (2002) Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct Ecol 16:585–595CrossRefGoogle Scholar
  63. Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633CrossRefGoogle Scholar
  64. White EM, Wilson JC, Clarke AR (2006) Biotic indirect effects: a neglected concept in invasion biology. Divers Distrib 12:43–455CrossRefGoogle Scholar
  65. Williamson M (1996) Biological invasions. Springer, BerlinGoogle Scholar
  66. Wootton JT (1994) The nature and consequences of indirect effects. Annu Rev Ecol Syst 25:443–466CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mariano A. Rodriguez-Cabal
    • 1
    Email author
  • M. Noelia Barrios-Garcia
    • 2
  • Christopher J. Greyson-Gaito
    • 3
  • Heather L. Slinn
    • 3
  • M. Paz Tapella
    • 4
  • Agustín Vitali
    • 1
  • Gregory M. Crutsinger
    • 5
  1. 1.Grupo de Ecología de Invasiones, INIBIOMA - CONICETUniversidad Nacional Del ComahueBarilocheArgentina
  2. 2.CONICET, CENAC - APNBarilocheArgentina
  3. 3.Department of Integrative BiologyUniversity of GuelphGuelphCanada
  4. 4.Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina
  5. 5.Scholar FarmsEl CerritoUSA

Personalised recommendations