Biological Invasions

, Volume 21, Issue 8, pp 2751–2759 | Cite as

Range expansion in an introduced social parasite-host species pair

  • Jackson A. HelmsIVEmail author
  • Selassie E. Ijelu
  • Nick M. Haddad
Original Paper


Dispersal in social parasites is constrained by the presence of suitable host populations, limiting opportunities for rapid range expansion. For this reason, although hundreds of ant species have expanded their ranges through human transport, few obligate social parasites have done so. We test the hypothesis that social parasites expand their ranges more slowly than their hosts by examining the spread of an introduced social parasite-host species pair in North America—the workerless ant Tetramorium atratulum and the pavement ant T. immigrans. In doing so we report a new range extension of T. atratulum in the interior US. Consistent with host limitation on dispersal, we found a time lag ranging from several years to over a century between the arrivals of the host and parasite to a new region. The estimated maximum rate of range expansion in the parasite was only a third as fast as that of the host. We suggest that relative to free-living social insects, social parasites may be less able to rapidly shift their ranges in response to changes in habitat or climate.


Dispersal Formicidae Host limitation Pavement ant Tetramorium atratulum Tetramorium immigrans 



This work was done on occupied Anishinaabe land where Hickory Corners, Michigan is now located. We thank local communities and the state of Michigan for maintaining and allowing us to work at the field sites. Three anonymous reviewers provided helpful feedback that improved the manuscript. This paper is Kellogg Biological Station contribution number 2138.  Support for this work was provided by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (Awards DE-SC0018409 and DE-FC02-07ER64494), by the National Science Foundation Long-term Ecological Research Program (DEB 1637653) and Research Experience for Undergraduates Program (DBI 1757530) at the Kellogg Biological Station, and by Michigan State University AgBioResearch.


  1. Allred DM (1982) Ants of Utah. Gt Basin Nat 42:415–511Google Scholar
  2. Alvarez-Blanco P, Caut S, Cerdá X, Angulo E (2017) Native predators living in invaded areas: responses of terrestrial amphibian species to an Argentine ant invasion. Oecologia 185:95–106CrossRefPubMedGoogle Scholar
  3. AntWeb (2018) AntWeb.
  4. Bertelsmeier C, Ollier S, Liebhold A, Keller L (2017) Recent human history governs global ant invasion dynamics. Nat Ecol Evol 1:0184CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brown WL Jr (1957) Is the ant genus Tetramorium native in North America? Breviora 72:1–8Google Scholar
  6. Buschinger A (1986) Evolution of social parasitism in ants. Trends Ecol Evol 1:155–160CrossRefPubMedGoogle Scholar
  7. Buschinger A (2009) Social parasitism among ants: a review (Hymenoptera: Formicidae). Myrmecol News 12:219–235Google Scholar
  8. Carlson CJ, Burgio KR, Dougherty ER, Phillips AJ, Bueno VM, Clements CF, Castaldo G, Dallas TA, Cizauskas CA, Cumming GS, Doña J, Harris NC, Jovani R, Mironov S, Muellerklein OC, Proctor HC, Getz WM (2017) Parasite biodiversity faces extinction and redistribution in a changing climate. Sci Adv 3:e1602422CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carter WG (1962) Ants of the North Carolina piedmont. J Elisha Mitchel Sci Soc 78:1–18Google Scholar
  10. Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026CrossRefPubMedGoogle Scholar
  11. Cizauskas CA, Carlson CJ, Burgio KR, Clements CF, Dougherty ER, Harris NC, Phillips AJ (2017) Parasite vulnerability to climate change: an evidence-based functional trait approach. R Soc Open Sci 4:160535CrossRefPubMedPubMedCentralGoogle Scholar
  12. Clark AT, Rykken JJ, Farrell BD (2011) The effects of biogeography on ant diversity and activity on the Boston Harbor Islands, Massachusetts, USA. PLoS ONE 6:e28045CrossRefPubMedPubMedCentralGoogle Scholar
  13. Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–261CrossRefPubMedGoogle Scholar
  14. Coovert GA (2005) The ants of Ohio (Hymenoptera: Formicidae). Bull Ohio Biol Surv 15:1–196Google Scholar
  15. Creighton WS (1934) Descriptions of three new North American ants with certain ecological observations on previously described forms. Psyche 41:185–200CrossRefGoogle Scholar
  16. Creighton WS (1950) Ants of North America. Bull Mus Comp Zool 104:1–585Google Scholar
  17. Dash ST, Sanchez L (2009) New distribution record for the social parasitic ant Anergates atratulus (Schenck, 1852) (Hymenoptera: Formicidae): an IUCN red-listed species. West N Am Naturalist 69:140–141CrossRefGoogle Scholar
  18. Dunn R, Harris NC, Colwell RK, Koh LP, Sodhi NS (2009) The sixth mass coextinction: are most endangered species parasites and mutualists? Proc R Soc B Biol Sci 276:3037–3045CrossRefGoogle Scholar
  19. Ellison A, Gotelli N (2018) Ant distribution and abundance in New England since 1990. Harvard Forest Data Archive: HF147.
  20. Ellison AM, Gotelli NJ, Farnsworth EJ, Alpert GD (2012) A field guide to the ants of New England. Yale University Press, New HavenGoogle Scholar
  21. Essig EO (1926) Insects of western North America. Macmillan Company, New York CityGoogle Scholar
  22. Fagan WF, Lewis MA, Neubert MG, van den Driessche P (2002) Invasion theory and biological control. Ecol Lett 5:148–157CrossRefGoogle Scholar
  23. Fisher BL, Cover SP (2007) Ants of North America: a guide to the Genera. University of California Press, BerkeleyGoogle Scholar
  24. Francoeur A (2000) Les Fourmis Nuisibles au Québec (Formicides, Hyménoptères). Version 1,0. Centre de données sur la biodiversité du Québec, Université du Québec à ChicoutimiGoogle Scholar
  25. Francoeur A, Pilon C (2011) Découverte, au Québec, de la fourmi parasite Anergates atratulus (Formicidae, Hymenoptera). Nat Can 135:30–33Google Scholar
  26. Gotelli NJ, Ellison AM, Dunn RR, Sanders NJ (2011) Counting ants (Hymenoptera: Formicidae): biodiversity sampling and statistical analysis for myrmecologists. Myrmecol News 15:13–19Google Scholar
  27. Green PT, O’Dowd DJ, Abbott KL, Jeffery M, Retallick K, Mac Nally R (2011) Invasional meltdown: invader-invader mutualism facilitates a secondary invasion. Ecology 92:1758–1768CrossRefPubMedGoogle Scholar
  28. Gregg RE (1945) The ants of the Chicago region. Ann Entomol Soc Am 37:447–480CrossRefGoogle Scholar
  29. Grodsky SM, Campbell JW, Fritts SR, Wigley TB, Moorman CE (2018) Variable responses of non-native and native ants to coarse woody debris removal following forest bioenergy harvests. Forest Ecol Manag 427:414–422CrossRefGoogle Scholar
  30. Guénard B, Weiser MD, Gómez K, Narula N, Economo EP (2017) The Global Ant Biodiversity Informatics (GABI) database: synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecol News 24:83–89Google Scholar
  31. Hastings A (2000) Parasitoid spread: lessons for and from invasion biology. In: Hochberg ME, Ives AR (eds) Parasitoid population biology. Princeton University Press, Princeton, pp 70–82Google Scholar
  32. Heinze J, Lautenschläger B, Buschinger A (2007) Female-biased sex ratios and unusually potent males in the social parasite Anergates atratulus (Hymenoptera: Formicidae). Myrmecol News 10:1–5Google Scholar
  33. Helms JA IV (2018) The flight ecology of ants (Hymenoptera: Formicidae). Myrmecol News 26:19–30Google Scholar
  34. Helms JA IV, Kaspari M (2015) Reproduction-dispersal tradeoffs in ant queens. Insectes Soc 62:171–181CrossRefGoogle Scholar
  35. Helms JA IV, Godfrey AP (2016) Dispersal polymorphisms in invasive fire ants. PLoS ONE 11:e0153955CrossRefPubMedPubMedCentralGoogle Scholar
  36. Helms JA IV, Bridge ES (2017) Range expansion drives the evolution of alternate reproductive strategies in invasive fire ants. Neobiota 33:67–82CrossRefGoogle Scholar
  37. Helms JA IV, Godfrey AP, Ames T, Bridge ES (2016) Are invasive fire ants kept in check by native aerial insectivores? Biol Lett 12:20160059CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Change Biol 12:450–455CrossRefGoogle Scholar
  39. Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233CrossRefGoogle Scholar
  40. International Union for Conservation of Nature (2018) The IUCN red list of threatened species.
  41. Ivanov K (2016) Exotic ants (Hymenoptera, Formicidae) of Ohio. J Hymenopt Res 51:203–226CrossRefGoogle Scholar
  42. Janicki J, Narula N, Ziegler M, Guénard B, Economo EP (2016) Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: the design and implementation of Ecol Inform 32:185–193CrossRefGoogle Scholar
  43. Keller L, Passera L (1989) Size and fat content of gynes in relation to the mode of colony founding in ants (Hymenoptera; Formicidae). Oecologia 80:236–240CrossRefPubMedGoogle Scholar
  44. Krombein KV, Hurd PB, Smith DR, Burks BD (1979) Catalog of hymenoptera in America North of Mexico. Smithsonian Institution Press, WashingtonGoogle Scholar
  45. Lapeva-Gjonova A, Kiran K, Aksoy V (2012) Unusual ant hosts of the socially parasitic ant Anergates atratulus (Schenck, 1852) (Hymenoptera, Formicidae). Psyche. CrossRefGoogle Scholar
  46. LeBrun EG, Jones NT, Gilbert LE (2014) Chemical warfare among invaders: a detoxification interaction facilitates an ant invasion. Science 343:1014–1017CrossRefPubMedGoogle Scholar
  47. MacGown JA, Forster JA (2005) A preliminary list of the ants (Hymenoptera: Formicidae) of Alabama, USA. Entomol News 116:61–74Google Scholar
  48. MacGown JA, Brown RL, Hill JG (2010) Invasive and other exotic ants in Mississippi. In: Program and abstracts of the 56th annual conference of the Mississippi Entomological Association, October 27–28, 2009. Midsouth Entomol vol 3, pp 55–64Google Scholar
  49. MacKay WP, MacKay EE (2002) The ants of New Mexico. Edwin Mellen Press, LewistonGoogle Scholar
  50. Mallis A (1941) A list of the ants of California with notes on their habits and distribution. Bull South Calif Acad Sci 40:61–100Google Scholar
  51. Merickel FW, Clark WH (1994) Tetramorium caespitum (Linnaeus) and Liometopum luctuosum W.M. Wheeler (Hymenoptera: Formicidae): new state records for Idaho and Oregon, with notes on their natural history. Pan Pac Entomol 70:148–158Google Scholar
  52. Morris RL (1942) An annotated list of the ants of Indiana. Proc Indiana Acad Sci 52:203–224Google Scholar
  53. Moser JC, Blum MS (1960) The Formicidae of Louisiana. Insect Cond La 3:48–50Google Scholar
  54. Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583CrossRefGoogle Scholar
  55. Ross J, Tittensor AM (1986) The establishment and spread of myxomatosis and its effect on rabbit populations. Philos Trans R Soc B 314:599–606CrossRefGoogle Scholar
  56. Schär S, Talavera G, Espadaler X, Rana JD, Andersen A, Cover SP, Vila R (2018) Do Holarctic ant species exist? Trans-Beringian dispersal and homoplasy in the Formicidae. J Biogeogr 45:1917–1928CrossRefGoogle Scholar
  57. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32CrossRefGoogle Scholar
  58. Slater SC, Simmons BA, Rogers TS, Phillips MF, Nordahl K, Davison BH (2015) The DOE bioenergy research centers: history, operations, and scientific output. BioEnergy Res 8:881–896CrossRefGoogle Scholar
  59. Smith MR (1918) A key to the known species of South Carolina ants, with notes (Hym.). Entomol News 29:17–29Google Scholar
  60. Smith MR (1943a) Ants of the genus Tetramorium in the United States with the description of a new species. Proc Entomol Soc Wash 45:1–5Google Scholar
  61. Smith MR (1943b) A generic and subgeneric synopsis of the male ants of the United States. Am Midl Nat 30:273–321CrossRefGoogle Scholar
  62. Smith MR (1965) House-infesting ants of the eastern United States: their recognition, biology, and economic importance. U.S. Dep Agric Tech Bull 1326:1–105Google Scholar
  63. Steiner FM, Schlick-Steiner BC, VanDerWal J, Reuther KD, Christian E, Stauffer C, Suarez AV, Williams SE, Crozier RH (2008) Combined modelling of distribution and niche in invasion biology: a case study of two invasive Tetramorium ant species. Divers Distrib 14:538–545CrossRefGoogle Scholar
  64. Taylor RW (1968) The Australian workerless inquiline ant Strumigenys xenos Brown (Hymenoptera-Formicidae) recorded from New Zealand. N Z Entomol 4:47–49CrossRefGoogle Scholar
  65. Thomas JA, Simcox DJ, Clarke RT (2009) Successful conservation of a threatened Maculinea butterfly. Science 325:80–83CrossRefPubMedGoogle Scholar
  66. Tsutsui ND, Suarez AV (2003) The colony structure and population biology of invasive ants. Conserv Biol 17:48–58CrossRefGoogle Scholar
  67. Uno S, Cotton J, Philpott SM (2010) Diversity, abundance, and species composition of ants in urban green spaces. Urban Ecosyst 13:425–441CrossRefGoogle Scholar
  68. USDOE (2018) U.S. Department of Energy Bioenergy Research Centers, DOE/SC-0162, Office of Biological and Environmental Research within the DOE Office of Science.
  69. Vepsäläinen K, Pisarski B (1982) Assembly of island ant communities. Ann Zool Fenn 19:327–335Google Scholar
  70. Verble RM, Yanoviak SP (2013) Short-term effects of prescribed burning on ant (Hymenoptera: Formicidae) assemblages in Ozark forests. Ann Entomol Soc Am 106:198–203CrossRefGoogle Scholar
  71. Wagner HC, Arthofer W, Seifert B, Muster C, Steiner FM, Schlick-Steiner BC (2017) Light at the end of the tunnel: integrative taxonomy delimits cryptic species in the Tetramorium caespitum complex (Hymenoptera: Formicidae). Myrmecol News 25:95–129Google Scholar
  72. Ward PS, Brady SG, Fisher BL, Schultz TR (2015) The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst Entomol 40:61–81CrossRefGoogle Scholar
  73. Weber NA (1965) Notes on the European pavement ant, Tetramorium caespitum, in the Philadelphia area (Hymenoptera: Formicidae). Entomol News 76:137–139Google Scholar
  74. Wesson LG Jr, Wesson RG (1940) A collection of ants from southcentral Ohio. Am Midl Nat 24:89–103CrossRefGoogle Scholar
  75. Wheeler WM (1905) An annotated list of the ants of New Jersey. Bull Am Mus Nat Hist 21:371–403Google Scholar
  76. Wheeler WM (1927) The occurrence of the pavement ant (Tetramorium caespitum L.) in Boston. Psyche 34:164–165CrossRefGoogle Scholar
  77. Wheeler GC, Wheeler JN (1986) The ants of Nevada. Natural History Museum of Los Angeles County, Los AngelesGoogle Scholar
  78. Wheeler GC, Wheeler JN, Kannowski PB (1994) Checklist of the ants of Michigan (Hymenoptera: Formicidae). Gt Lakes Entomol 26:297–310Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Kellogg Biological Station, Department of Integrative BiologyMichigan State UniversityHickory CornersUSA
  2. 2.University of Saint FrancisFort WayneUSA

Personalised recommendations