Advertisement

Multiple pattern analysis reveals insights about drivers of hawkweed invasion into the Fuegian steppe at different scales

  • P. A. CipriottiEmail author
  • F. Biganzoli
  • W. B. Batista
  • M. B. Collantes
Original Paper
  • 33 Downloads

Abstract

The study of invasion patterns across multiple spatial scales brings insight about the spread of exotic species in novel habitats. We examined the spatial patterns of yellow mouse-ear hawkweed (Hieracium pilosella L.), a recognized invader plant in Tierra del Fuego rangelands, at the scales of landscape and vegetation stand to assess the roles of disturbance, propagule pressure and biotic drivers. We surveyed twenty plots along two transects (ca. 20 km) across paddocks with different disturbance history (degraded pastures vs. natural communities) and at increasing distances from invasion hotspots. We analyzed the patterns of density, cover, and size structure of local H. pilosella populations across the landscape scale, and we conducted point- and mark-pattern analyses of distribution of patches of this species within vegetation stands. At landscape scale, the hawkweed density and cover decreased from west to east only in the transect including degraded pastures in the western portion. Plots located within 7 km or less from degraded pastures exhibited higher cover of H. pilosella (5–10%) than plots farther away (< 0.1%). Local populations inside or near the degraded pastures exhibited higher frequency of large patches than populations located farther away. At the scale of vegetation stand, point-pattern analysis detected aggregation of H. pilosella patches at short distances (0.5–3 m) in most plots; whereas, in highly infested plots, mark-correlation function analysis indicated a negative association between the sizes of patches located at short distances (0.5–1.5 m) from each other. Human disturbance, propagule pressure originating in invasion hotspots, and long-distance dispersal events appear as determinants of the spread of H. pilosella invasion at landscape scale. At patch scale, field patterns suggest that local encroachment is mostly determined by vegetative growth and somehow limited by interference from large established hawkweed patches. Our results strongly suggest that, unless effective management actions are taken, over the near future (30–50 years) the exotic forb H. pilosella will continue to invade displacing the native shrub steppe and grassland vegetation in the region.

Keywords

Disturbances Grasslands Hieracium pilosella Plant interferences Propagule pressure Rangelands 

Notes

Acknowledgements

We thank to the owners of Cullen Ranch to permit conduct our field surveys in their property, particularly to the manager Mr. Errol O’Byrne for his hospitality and facilities to conduct the field surveys. We also thank to Maximiliano Sleiman and Carla Narbaiza, from the Natural Resources Secretariat of the Tierra del Fuego Province & AIAS (Argentina), for their field assistance to set preliminary plots, and to Vanina L. and Aldo Cipriotti for the assistance with the English writing. We thank to two anonymous reviewers that clearly improved our original version of manuscript with their constructive critics. The studies reported in this manuscript comply with the ethics guidelines and current laws of the Republic of Argentina. This work was supported by Grants from the Agencia Nacional de Promoción Científica y Tecnológica (PICT 2010—0474 and PICT 2014–0852) and MINCYT-DAAD (DA/11/03).

References

  1. Allan HH (1924) Notes of the occurrence of certain exotic plants in New Zealand. N Z J Agric 29:311–315Google Scholar
  2. Altesor A, Pezzani F, Grun S, Rodríguez C (1999) Relationship between spatial strategies and morphological attributes in a Uruguayan grassland: a functional approach. J Veg Sci 10:457–462CrossRefGoogle Scholar
  3. Anchorena J, Cingolani A, Livraghi E, Collantes MB, Stofella S (2001) Manejo del pastoreo de ovejas en Tierra del Fuego. Edipubli S.A., Buenos AiresGoogle Scholar
  4. Arim M, Abades SR, Neill PE, Lima M, Marquet PA (2006) Spread dynamics of invasive species. PNAS 103:374–378CrossRefGoogle Scholar
  5. Baddeley A, Rubak E, Turner R (2016) Spatial point patterns: methodology and applications with R. CRC Press, Boca RatonGoogle Scholar
  6. Bellingham PJ, Coomes DA (2003) Grazing and community structure as determinants of invasion success by Scotch broom in a New Zealand montane shrubland. Divers Distrib 9:19–28CrossRefGoogle Scholar
  7. Bishop GF, Davy AJ (1994) Hieracium pilosella L. (Pilosella officinarum F. Schultz and Schultz-Bip.). J Ecol 82:195–210CrossRefGoogle Scholar
  8. Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40CrossRefGoogle Scholar
  9. Catford JA, Vesk PA, Richardson DM, Pyšek P (2012) Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Glob Chang Biol 18:44–62CrossRefGoogle Scholar
  10. Chaneton EJ, Perelman SB, Omacini M, León RJC (2002) Grazing, environmental heterogeneity, and alien plant invasions in temperate pampa grasslands. Biol Invasions 4:7–24CrossRefGoogle Scholar
  11. Chytrý M, Jarosik V, Pyšek P, Hajek O, Knollova I, Tichy L, Danihelka J (2008) Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89:1541–1553CrossRefGoogle Scholar
  12. Cipriotti PA, Rauber RB, Collantes MB, Braun K, Escartín C (2010) Hieracium pilosella invasion in the Tierra del Fuego steppe, Southern Patagonia. Biol Invasions 12:2523–2535CrossRefGoogle Scholar
  13. Cipriotti PA, Rauber RB, Collantes MB, Braun K, Escartín C (2012) Control measures for a recent invasion of Hieracium pilosella in Southern Patagonian rangelands. Weed Res 52:98–105CrossRefGoogle Scholar
  14. Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037CrossRefGoogle Scholar
  15. Collantes MB, Anchorena J, Cingolani AM (1999) The steppes of Tierra del Fuego: floristic and growth form patterns controlled by soil fertility and moisture. Plant Ecol 140:61–75CrossRefGoogle Scholar
  16. Collantes MB, Braun K, Escartín C, Cingolani AM, Anchorena J (2005) Patrones de cambio de la vegetación de la estepa fueguina en relación al pastoreo. In: Oesterheld M, Aguiar MR, Ghersa CM, Paruelo JM (eds) La heterogeneidad de la vegetación de los agroecosistemas. Editorial de la Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, pp 235–251Google Scholar
  17. Corbin JD, D’Antonio CM (2010) Not novel, just better: competition between native and non-native plants in California grasslands that share species traits. Plant Ecol 209:71–81CrossRefGoogle Scholar
  18. Corbin JD, D’Antonio CM (2004) Effects of exotic species on soil nitrogen cycling: implications for restoration. Weed Technol 18:1464–1467CrossRefGoogle Scholar
  19. Covacevich N, Uribe I, Lira, R (1995) Prospección de pilosella (Hieracium pilosella L.) en terrenos de uso ganadero de la XII Región. Informe. INIA/CRI Kampenaike. SEREMI de Agricultura, Intendencia XII Región, Punta Arenas, Chile, p 19Google Scholar
  20. Day N, Buckley HL (2011) Invasion patterns across multiple scales by Hieracium species over 25 years in tussock grasslands of New Zealand’s South Island. Aust Ecol 36:559–570CrossRefGoogle Scholar
  21. Díaz MC, Zunzunegui M, Alvarez-Cansino L, Esquivias MP, Collantes MB, Cipriotti PA (2015) Species-specific effects of the invasive Hieracium pilosella in Magellanic steppe grasslands are driven by nitrogen cycle changes. Plant Soil 397:175–187CrossRefGoogle Scholar
  22. Drake DAR, Casas-Monroy O, Koops MA, Bailey SA (2015) Propagule pressure in the presence of uncertainty: extending the utility of proxy variables with hierarchical models. Methods Ecol Evol 6:1363–1371CrossRefGoogle Scholar
  23. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonCrossRefGoogle Scholar
  24. Eppstein MJ, Molofsky J (2007) Invasivenness in plant communities with feedbacks. Ecol Lett 10:253–263CrossRefGoogle Scholar
  25. Foxcroft LC, Richardson DM, Rouget M, MacFadyen S (2009) Patterns of alien plant distribution at multiple spatial scales in a large national park: implications for ecology, management and monitoring. Divers Distrib 15:367–378CrossRefGoogle Scholar
  26. González-Moreno P, Pino J, Carreras D, Basnou C, Fernández-Rebollar I, Vilà M (2013) Quantifying the landscape influence on plant invasions in Mediterranean coastal habitats. Landsc Ecol 28:891–903CrossRefGoogle Scholar
  27. Grime JP, Jeffrey DW (1965) Seedling establishment in vertical gradients of sunlight. J Ecol 53:621–642CrossRefGoogle Scholar
  28. Hierro JL, Villarreal D, Ozkan E, Graham JM, Callaway RM (2006) Disturbance facilitates invasion: the effects are stronger abroad than at home. Am Nat 168:144–156CrossRefGoogle Scholar
  29. Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conserv Biol 6:324–337CrossRefGoogle Scholar
  30. Hueck K, Seibert P (1972) Vegetationskarte von Südamerika (1981). Aufl, New YorkGoogle Scholar
  31. Hulvey KB, Zavaleta ES (2012) Abundance declines of a native forb have nonlinear impacts on grassland invasion resistance. Ecology 92:378–388CrossRefGoogle Scholar
  32. Jeschke JM (2014) General hypotheses in invasion ecology. Divers Distrib 20:1229–1234CrossRefGoogle Scholar
  33. Kettenring KM, Whigham DF, Hazelton EL, Gallagher SK, Weiner HM (2015) Biotic resistance, disturbance, and mode of colonization impact the invasion of a widespread, introduced wetland grass. Ecol Appl 25:466–480CrossRefGoogle Scholar
  34. Knicker H, Saggar S, Baumler R, Mclntosh PD, Kogel-Knabner I (2000) Soil organic matter transformations induced by Hieracium pilosella L. in tussock grassland of New Zealand. Biol Fertil Soils 32:194–201CrossRefGoogle Scholar
  35. Kulmatiski A, Beard KH, Stark JM (2006) Soil history as a primary control on plant invasion in abandoned agricultural fields. J Appl Ecol 43:868–876CrossRefGoogle Scholar
  36. Law R, Illian J, Burslem DFRP, Gratzer G, Gunatilleke CVS, Gunatilleke IAU (2009) Ecological information from spatial patterns of plants: insights from point process theory. J Ecol 97:616–628CrossRefGoogle Scholar
  37. Levine JM, Vilà M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc B 270:775–781CrossRefGoogle Scholar
  38. Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989CrossRefGoogle Scholar
  39. Livraghi E, Cabeza S, Kofalt R, Humano G, Mascó M, Montes L (1998) Documento de trabajo sobre Hieracium pilosella L. Informe Técnico INTA, p 10Google Scholar
  40. Lockwood JL, Cassey P, Blackburn TM (2005) The role of propagule pressure in explaining species invasion. Trends Ecol Evol 20:223–228CrossRefGoogle Scholar
  41. Mack RN (1989) Temperate grasslands vulnerable to plant invasions: characteristics and consequences. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmanek M, Williamson W (eds) Biological invasions: a global perspective. Wiley, Brisbane, pp 155–179Google Scholar
  42. Makepeace W, Dobson AT, Scott D (1985) Interference phenomena due to mouse-ear and king-devil hawkweed. N Z J Bot 23:79–90CrossRefGoogle Scholar
  43. Meurk CD, Walker S, Gibson RS, Espie P (2002) Changes in vegetation states in grazed and ungrazed Mackenzie Basin grasslands, New Zealand, 1990–2000. N Z J Ecol 26:95–106Google Scholar
  44. Moen J, Meurk CD (2001) Competitive abilities of three indigenous New Zealand plant species in relation to the introduced plant Hieracium pilosella. Basic Appl Ecol 2:243–250CrossRefGoogle Scholar
  45. Moore DM (1983) Flora of Tierra del Fuego. Missouri Botanical Garden, St. LouisGoogle Scholar
  46. Nuñez MA, Moretti A, Simberloff D (2011) Propagule pressure hypothesis not supported by an 80-year experiment on woody species invasion. Oikos 120:1311–1316CrossRefGoogle Scholar
  47. Ohlemüller R, Walker S, Wilson JB (2006) Local vs regional factors as determinants of the invasibility of indigenous forest fragments by alien plant species. Oikos 112:493–501CrossRefGoogle Scholar
  48. Parepa M, Fischer M, Bossdorf O (2013) Environmental variability promotes plant invasion. Nat Commun 4:1604.  https://doi.org/10.1038/ncomms2632 CrossRefGoogle Scholar
  49. Pauchard A, Shea K (2006) Integrating the study of non-native plant invasions across spatial scales. Biol Invasions 8:399–413CrossRefGoogle Scholar
  50. Posse G, Anchorena J, Collantes MB (2000) Spatial micro-patterns in the steppe of Tierra del Fuego induced by sheep grazing. J Veg Sci 11:43–50CrossRefGoogle Scholar
  51. Pyšek P, Hulme PE (2005) Spatio-temporal dynamics of plant invasions: linking pattern to process. Ecoscience 12:302–315CrossRefGoogle Scholar
  52. Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Ann Rev Environ Res 35:25–55CrossRefGoogle Scholar
  53. Rauber RB, Collantes MB, Cipriotti PA, Anchorena J (2013) Biotic and abiotic constraints to a plant invasion in vegetation communities of Tierra del Fuego. Aust Ecol 39:436–442CrossRefGoogle Scholar
  54. Rauber RB, Cipriotti PA, Collantes MB (2014) Local and intermediated-intensity soil disturbances increase the colonization and expansion dynamics of an invasive plant in Southern Patagonian rangelands. Commun Ecol 15:1–9CrossRefGoogle Scholar
  55. Rauber RB, Cipriotti PA, Collantes MB, Martini JP, Frers E (2016) Regional suitability assessment for the mouse-ear hawkweed (Hieracium pilosella) invasion in Patagonian rangelands. Invasive Plant Sci Manag 9:242–251Google Scholar
  56. Ricciardi A, Jones LA, Kestrup AM, Ward JM (2011) Expanding the propagule pressure concept to understand the impact of biological invasions. In: Richardson DM (ed) Fifty years of invasion ecology: the legacy of Charles Elton, vol 17. Blackwell Publishing, Hoboken, pp 225–235Google Scholar
  57. Rose AB, Frampton CN (2007) Rapid short-tussock grassland decline with and without grazing, Marlborough, New Zealand. N Z J Ecol 31:232–244Google Scholar
  58. Rose AB, Basher LR, Wiser SK, Platt HK, Lynn LH (1998) Factors predisposing short-tussock grasslands to Hieracium invasion in Marlborough, New Zealand. N Z J Ecol 22:121–140Google Scholar
  59. Rouget M, Richardson DM (2003) Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162:713–724CrossRefGoogle Scholar
  60. Scott NA, Saggar S, McIntosh PD (2001) Biogeochemical impact of Hieracium invasion in New Zealand´s grazed tussock grasslands: sustainability implications. Ecol Appl 11:1311–1322CrossRefGoogle Scholar
  61. Thomas SM, Moloney KA (2013) Hierarchical factors impacting the distribution of an invasive species: landscape context and propagule pressure. Landsc Ecol 28:81–93CrossRefGoogle Scholar
  62. Velázquez E, Martínez I, Getzin S, Moloney KA, Wiegand T (2016) An evaluation of the state of spatial point pattern analysis in ecology. Ecography 39:1042–1055CrossRefGoogle Scholar
  63. Vilà M, Ibáñez I (2011) Plant invasions in the landscape. Landsc Ecol 26:461–472CrossRefGoogle Scholar
  64. Voss EG, Böhlke MW (1978) The status of certain hawkweeds (Hieracium subgenus Pilosella) in Michigan. Mich Bot 17:35–47Google Scholar
  65. Walker S, Wilson JB, Lee WG (2005) Does fluctuating resource availability increase invasibility? Evidence from field experiments in New Zealand short tussock grassland. Biol Invasions 7:195–211CrossRefGoogle Scholar
  66. Wiegand T, Moloney KA (2013) Handbook of spatial point-pattern analysis in ecology. Chapman & Hall/CRC Applied Environmental Statistics, Boca RatonGoogle Scholar
  67. Wijesinghe DK, Handel SN (1994) Advantages of clonal growth in heterogeneous habitats: an experiment with Potentilla simplex. J Ecol 82:495–502CrossRefGoogle Scholar
  68. Winkler E, Stöcklin J (2002) Sexual and vegetative reproduction of Hieracium pilosella L. under competition and disturbance: a grid-based simulation model. Ann Bot 89:525–536CrossRefGoogle Scholar
  69. Wu Y, Rutchey K, Wang N, Go J (2006) The spatial pattern and dispersion of Lygodium microphyllum in the Everglades wetland ecosystem. Biol Invasions 8:1483–1493CrossRefGoogle Scholar
  70. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Depto. de Métodos Cuantitativos y Sistemas de Información, Facultad de AgronomíaUniversidad de Buenos AiresCiudad de Buenos AiresArgentina
  2. 2.Instituto de Investigaciones Fisiológicas y Ecológicas vinculadas a la Agricultura (IFEVA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad de Buenos AiresArgentina
  3. 3.Laboratorio de Ecología de Pastizales, Museo Argentino de Ciencias Naturales Bernardino RivadaviaConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad de Buenos AiresArgentina

Personalised recommendations