Advertisement

Biological Invasions

, Volume 21, Issue 6, pp 2127–2141 | Cite as

Can citizen science data guide the surveillance of invasive plants? A model-based test with Acacia trees in Portugal

  • Nuno César de SáEmail author
  • Hélia Marchante
  • Elizabete Marchante
  • João Alexandre Cabral
  • João Pradinho Honrado
  • Joana Raquel Vicente
Original Paper

Abstract

With the rapid expansion of invasive alien plants (IAPs), accurate and timely distribution data is increasingly critical to successful management. However, it is not easy for researchers/technicians to obtain data for all IAPs and territories. In this context, data collected by Citizen Science Platforms can be a useful tool, complementing professional data. We hypothesize that combining IAP data collected by citizens and data collected by researchers can improve the accuracy of species distribution models (SDMs) and optimize surveillance efforts. To test this, we gathered data from a Citizen Science Platform (Invasoras.pt) and from researchers on three invasive Acacia species widespread in Portugal and generated three different datasets: researchers, citizens, and researchers plus citizens. We modelled the potential distribution of the species using an ensemble approach (biomod2 R package) to test the effect of the different datasets on the resulting model accuracy, the selected environmental drivers of species distribution and the predicted spatial distribution. All SDMs obtained very high accuracy, with the highest values being obtained in the models trained with researchers’ data. Nevertheless, models trained with citizen data vastly increased the predicted spatial distribution in all cases. The spatial projections of the three models were further compared and ranked to identify the areas of highest surveillance priority for each species, i.e., areas with high agreement between the models but where occurrence data is lacking. These results can be used to guide future surveillance efforts both for citizens and researchers.

Keywords

Acacia species Ensemble modelling Invasive alien plants SDM Citizen science 

Notes

Acknowledgements

N. César de Sá was supported through the Project INVADER-IV (PTDC/AAGREC/4896/2014). E. Marchante and H Marchante were supported by European funds FEDER and Portugal 2020/POCI and national funds FCT through project INVADER-IV (PTDC/AAGREC/4896/2014). E. Marchante was also supported by Projecto ReNATURE—Valorization of the Natural Endogenous Resources of the Centro Region (Centro 2020, Centro-01-0145-FEDER-000007). J.R. Vicente was supported by European funds POPH/FSE and national funds FCT trough the Post-Doc Grant SFRH/BPD/84044/2012. J.A. Cabral and J.R. Vicente were supported as CITAB researchers by European Investment Funds by FEDER/COMPETE/POCI—Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT—Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013. The authors thank Alex Brandson for English revision of the final version of the manuscript.

Supplementary material

10530_2019_1962_MOESM1_ESM.docx (4.4 mb)
Supplementary material 1 (DOCX 4532 kb)
10530_2019_1962_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 14 kb)

References

  1. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338.  https://doi.org/10.1111/j.2041-210X.2011.00172.x CrossRefGoogle Scholar
  2. Breiman L (2001) Random forests. Mach Learn 45:5–32.  https://doi.org/10.1023/A:1010933404324 CrossRefGoogle Scholar
  3. Buchadas A, Vaz AS, Honrado JP et al (2017) Dynamic models in research and management of biological invasions. J Environ Manag 196:594–606.  https://doi.org/10.1016/j.jenvman.2017.03.060 CrossRefGoogle Scholar
  4. Cardoso AC, Tsiamis K, Gervasini E et al (2017) Citizen science and open data: a model for invasive alien species in Europe. Res Ideas Outcomes 3:e14811.  https://doi.org/10.3897/rio.3.e14811 CrossRefGoogle Scholar
  5. César de Sá N, Carvalho S, Castro P et al (2017) Using landsat time series to understand how management and disturbances influence the expansion of an invasive tree. IEEE J Sel Top Appl Earth Obs Remote Sens 10:3243–3253.  https://doi.org/10.1109/JSTARS.2017.2673761 CrossRefGoogle Scholar
  6. Chandler M, See L, Copas K et al (2017) Contribution of citizen science towards international biodiversity monitoring. Biol Conserv 213:280–294.  https://doi.org/10.1016/j.biocon.2016.09.004 CrossRefGoogle Scholar
  7. D’Amen M, Rahbek C, Zimmermann NE, Guisan A (2017) Spatial predictions at the community level: from current approaches to future frameworks. Biol Rev 92:169–187.  https://doi.org/10.1111/BRV.12222 CrossRefGoogle Scholar
  8. de Sá NC, Castro P, Carvalho S, Marchante E, López-Núñez FA, Marchante H (2018) Mapping the flowering of an invasive plant using unmanned aerial vehicles: is there potential for biocontrol monitoring? Front Plant Sci 9:293.  https://doi.org/10.3389/fpls.2018.00293 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Direcção Geral do Território (2017) Carta de Uso e Ocupação do solo de Portugal continental para 2007—COS2007. http://www.dgterritorio.pt/. Accessed 1 Dec 2016
  10. Dupont H, Gourmelon F, Rouan M et al (2016) The contribution of agent-based simulations to conservation management on a Natura 2000 site. J Environ Manag 168:27–35.  https://doi.org/10.1016/j.jenvman.2015.11.056 CrossRefGoogle Scholar
  11. European Union (2014) Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Off J Eur Union 2014:35–55Google Scholar
  12. Fisher-Phelps M, Cao G, Wilson RM, Kingston T (2017) Protecting bias: across time and ecology, open-source bat locality data are heavily biased by distance to protected area. Ecol Inf 40:22–34.  https://doi.org/10.1016/j.ecoinf.2017.05.003 CrossRefGoogle Scholar
  13. Friedman JH (1991) Rejoinder: multivariate adaptive regression splines. Ann Stat 19:123–141.  https://doi.org/10.1214/aos/1176347973 CrossRefGoogle Scholar
  14. Gallien L, Douzet R, Pratte S et al (2012) Invasive species distribution models—how violating the equilibrium assumption can create new insights. Glob Ecol Biogeogr 21:1126–1136.  https://doi.org/10.1111/j.1466-8238.2012.00768.x CrossRefGoogle Scholar
  15. Godoy O, Richardson DM, Valladares F, Castro-Díez P (2009) Flowering phenology of invasive alien plant species compared with native species in three Mediterranean-type ecosystems. Ann Bot 103:485–494.  https://doi.org/10.1093/aob/mcn232 CrossRefPubMedGoogle Scholar
  16. Goodchild MF (2007) Citizens as sensors: the world of volunteered geography. GeoJournal 69:211–221.  https://doi.org/10.1007/s10708-007-9111-y CrossRefGoogle Scholar
  17. Graham LJ, Haines-Young RH, Field R (2015) Using citizen science data for conservation planning: methods for quality control and downscaling for use in stochastic patch occupancy modelling. Biol Conserv 192:65–73.  https://doi.org/10.1016/j.biocon.2015.09.002 CrossRefGoogle Scholar
  18. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, LondonGoogle Scholar
  19. Hastie T, Tibshirani R, Buja A (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89:1255–1270.  https://doi.org/10.1080/01621459.1994.10476866 CrossRefGoogle Scholar
  20. Hijmans RJ, van Etten J (2012) Raster: geographic analysis and modeling with raster data. In: R Packag. Version 2.4-15. http://cran.r-project.org/package=raster. Accessed 1 Jan 2015
  21. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978.  https://doi.org/10.1002/joc.1276 CrossRefGoogle Scholar
  22. Honrado JP, Pereira HM, Guisan A (2016) Fostering integration between biodiversity monitoring and modelling. J Appl Ecol 53:1299–1304.  https://doi.org/10.1111/1365-2664.12777 CrossRefGoogle Scholar
  23. Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43:835–847.  https://doi.org/10.1111/j.1365-2664.2006.01227.x CrossRefGoogle Scholar
  24. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18.  https://doi.org/10.1111/j.1365-2664.2008.01600.x CrossRefGoogle Scholar
  25. Instituto Português do Mar e da Atmosfera (2017) Clima de Portugal Continental. https://www.ipma.pt/pt/educativa/tempo.clima/index.jsp?page=clima.pt.xml. Accessed 1 Jan 2017
  26. Kottek M, Grieser J, Beck C et al (2006) World Map of the Köppen–Geiger climate classification updated. Meteorol Zeitschrift 15:259–263.  https://doi.org/10.1127/0941-2948/2006/0130 CrossRefGoogle Scholar
  27. Kullenberg C, Kasperowski D (2016) What is citizen science? A scientometric meta-analysis. PLoS ONE 11:e0147152.  https://doi.org/10.1371/journal.pone.0147152 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mair L, Ruete A (2016) Explaining spatial variation in the recording effort of citizen science data across multiple taxa. PLoS ONE 11:e0147796.  https://doi.org/10.1371/journal.pone.0147796 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mair L, Harrison PJ, Jönsson M et al (2017) Evaluating citizen science data for forecasting species responses to national forest management. Ecol Evol 7:368–378.  https://doi.org/10.1002/ece3.2601 CrossRefPubMedGoogle Scholar
  30. Marchante H, Freitas H, Hoffmann JH (2010) Seed ecology of an invasive alien species, Acacia longifolia (Fabaceae), in Portuguese dune ecosystems. Am J Bot 97:1780–1790.  https://doi.org/10.3732/ajb.1000091 CrossRefPubMedGoogle Scholar
  31. Marchante H, Morais M, Freitas H, Marchante E (2014) Guia prático para a identificação de Plantas Invasoras em Portugal, 1st edn. Imprensa da Universidade de Coimbra, CoimbraCrossRefGoogle Scholar
  32. Marchante H, Morais MC, Gamela A, Marchante E (2017) Using a WebMapping platform to engage volunteers to collect data on invasive plants distribution. Trans GIS 21:238–252.  https://doi.org/10.1111/tgis.12198 CrossRefGoogle Scholar
  33. Mas J, Kolb M, Paegelow M et al (2014) Environmental modelling & software inductive pattern-based land use/cover change models: a comparison of four software packages. Environ Model Softw 51:94–111.  https://doi.org/10.1016/j.envsoft.2013.09.010 CrossRefGoogle Scholar
  34. McCullagh P, Nelder JA (1989) Generalized linear models. Springer, BostonCrossRefGoogle Scholar
  35. McKinley DC, Miller-Rushing AJ, Ballard HL et al (2017) Citizen science can improve conservation science, natural resource management, and environmental protection. Biol Conserv 208:15–28.  https://doi.org/10.1016/j.biocon.2016.05.015 CrossRefGoogle Scholar
  36. Ministério do Ambiente (1999) Decreto-Lei n. (565/99 de 21 de Dezembro). Diário da República 1 Serie A 9100–9114Google Scholar
  37. Monteiro A, Gonçalves J, Fernandes R et al (2017) Estimating invasion success by non-native trees in a national park combining WorldView-2 very high resolution satellite data and species distribution models. Diversity 9:6.  https://doi.org/10.3390/d9010006 CrossRefGoogle Scholar
  38. Morais M, Marchante E, Marchante H (2017) Big troubles are already here: risk assessment protocol shows high risk of many alien plants present in Portugal. J Nat Conserv 35:1–12.  https://doi.org/10.1016/j.jnc.2016.11.001 CrossRefGoogle Scholar
  39. Naimi B (2015) usdm: uncertainty Analysis for Species Distribution Models R package version 1.1-15. https://cran.r-project.org/package=usdm. Accessed 28 Nov 2016
  40. Passos I, Marchante H, Pinho R, Marchante E (2017) What we don’t seed: the role of long-lived seed banks as hidden legacies of invasive plants. Plant Ecol 218:1313–1324.  https://doi.org/10.1007/s11258-017-0770-6 CrossRefGoogle Scholar
  41. Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the Twenty-first International Conference on Machine Learning, ICML’04, New York, NY, USA, ACM, pp 83Google Scholar
  42. Plantas invasoras em Portugal (2017) Plantas invasoras em Portugal. http://invasoras.pt/mapa-de-avistamentos/. Accessed 8 Nov 2016
  43. Pocock MJO, Roy HE, Fox R et al (2017) Citizen science and invasive alien species: predicting the detection of the oak processionary moth Thaumetopoea processionea by moth recorders. Biol Conserv 208:146–154.  https://doi.org/10.1016/j.biocon.2016.04.010 CrossRefGoogle Scholar
  44. Ridgeway G (1999) The state of boosting. Comput Sci Stat 31:172–181Google Scholar
  45. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  46. Robinson OJ, Ruiz-Gutierrez V, Fink D (2018) Correcting for bias in distribution modelling for rare species using citizen science data. Divers Distrib 24:460–472.  https://doi.org/10.1111/ddi.12698 CrossRefGoogle Scholar
  47. Ruete A (2015) Displaying bias in sampling effort of data accessed from biodiversity databases using ignorance maps. Biodivers Data J 3:e5361.  https://doi.org/10.3897/BDJ.3.e5361 CrossRefGoogle Scholar
  48. Santika T (2011) Assessing the effect of prevalence on the predictive performance of species distribution models using simulated data. Glob Ecol Biogeogr 20:181–192.  https://doi.org/10.1111/j.1466-8238.2010.00581.x CrossRefGoogle Scholar
  49. See L, Mooney P, Foody G et al (2016) Crowdsourcing, citizen science or volunteered geographic information? The current state of crowdsourced geographic information. ISPRS Int J Geo-Inf 5:55.  https://doi.org/10.3390/ijgi5050055 CrossRefGoogle Scholar
  50. Simberloff D (2014) Biological invasions: what’ s worth fighting and what can be won? Ecol Eng 65:112–121CrossRefGoogle Scholar
  51. Simberloff D, Martin J, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66.  https://doi.org/10.1016/j.tree.2012.07.013 CrossRefGoogle Scholar
  52. Thuiller W, Pollock LJ, Gueguen M, Münkemüller T (2015) From species distributions to meta-communities. Ecol Lett 18:1321–1328.  https://doi.org/10.1111/ele.12526 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Thuiller W, Georges D, Engler R, Breiner F (2016) biomod2: ensemble platform for species distribution modeling. R package version 3.3-7. https://cran.r-project.org/package=biomod2. Accessed 15 Nov 2016
  54. Tiago P, Pereira HM, Capinha C (2017) Using citizen science data to estimate climatic niches and species distributions. Basic Appl Ecol 20:75–85.  https://doi.org/10.1016/j.baae.2017.04.001 CrossRefGoogle Scholar
  55. Trethowan PD, Robertson MP, McConnachie AJ (2011) Ecological niche modelling of an invasive alien plant and its potential biological control agents. S Afr J Bot 77:137–146.  https://doi.org/10.1016/j.sajb.2010.07.007 CrossRefGoogle Scholar
  56. Tye CA, McCleery RA, Fletcher RJ et al (2017) Evaluating citizen vs. professional data for modelling distributions of a rare squirrel. J Appl Ecol 54:628–637.  https://doi.org/10.1111/1365-2664.12682 CrossRefGoogle Scholar
  57. Václavík T, Meentemeyer RK (2011) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 99:99.  https://doi.org/10.1111/j.1472-4642.2011.00854.x CrossRefGoogle Scholar
  58. Vaz AS, Kueffer C, Kull CA et al (2017) Integrating ecosystem services and disservices: insights from plant invasions. Ecosyst Serv 23:94–107.  https://doi.org/10.1016/j.ecoser.2016.11.017 CrossRefGoogle Scholar
  59. Vicente J, Alves P, Randin C et al (2010) What drives invasibility? A multi-model inference test and spatial modelling of alien plant species richness patterns in northern Portugal. Ecography (Cop) 33:1081–1092.  https://doi.org/10.1111/j.1600-0587.2010.6380.x CrossRefGoogle Scholar
  60. Vicente J, Randin CF, Gonçalves J et al (2011) Where will conflicts between alien and rare species occur after climate and land-use change? A test with a novel combined modelling approach. Biol Invasions 13:1209–1227.  https://doi.org/10.1007/s10530-011-9952-7 CrossRefGoogle Scholar
  61. Vicente JR, Fernandes RF, Randin CF et al (2013) Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions. J Environ Manage 131:185–195.  https://doi.org/10.1016/j.jenvman.2013.09.032 CrossRefPubMedGoogle Scholar
  62. Vicente JR, Gonçalves J, Honrado JP et al (2014) A framework for assessing the scale of influence of environmental factors on ecological patterns. Ecol Complex 20:151–156.  https://doi.org/10.1016/j.ecocom.2014.10.005 CrossRefGoogle Scholar
  63. Vicente JR, Alagador D, Guerra C et al (2016) Cost-effective monitoring of biological invasions under global change: a model-based framework. J Appl Ecol 53:1317–1329.  https://doi.org/10.1111/1365-2664.12631 CrossRefGoogle Scholar
  64. Zhang X, Vincent ACJ (2017) Integrating multiple datasets with species distribution models to inform conservation of the poorly-recorded Chinese seahorses. Biol Conserv 211:161–171.  https://doi.org/10.1016/j.biocon.2017.05.020 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  2. 2.Instituto Politécnico de CoimbraESAC, CFECoimbraPortugal
  3. 3.Institute of Environmental Sciences CMLLeiden UniversityLeidenThe Netherlands
  4. 4.Laboratory of Applied Ecology, CITAB – Centre for the Research and Technology of Agro-Environment and Biological SciencesUniversity of Trás-os-Montes e Alto DouroVila RealPortugal
  5. 5.Research Network in Biodiversity and Evolutionary Biology, Research Centre in Biodiversity and Genetic Resources (InBIO-CIBIO)Universidade do PortoVairãoPortugal
  6. 6.Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations