Advertisement

Exploring how non-native seagrass species could provide essential ecosystems services: a perspective on the highly invasive seagrass Halophila stipulacea in the Caribbean Sea

  • Inés G. VianaEmail author
  • Rapti Siriwardane-de Zoysa
  • Demian A. Willette
  • Lucy G. GillisEmail author
Perspectives and paradigms
  • 149 Downloads

Abstract

The loss of biodiversity by the replacement of invasive species could lead to the loss of functional traits that maintain certain ecosystem services (ES). The ES method provides a conceptual framework to value changes of functional traits related to this loss of biodiversity. The Caribbean Sea offers a multifaceted seascape to evaluate this approach as native seagrass species (Thalassia testudinum, Syringodium filiforme or Halodule wrightii) cohabit this region together with the invasive seagrass Halophila stipulacea, native to the Indian Ocean. The functional traits of native seagrass species in the Caribbean are compared to different traits of H. stipulacea observed worldwide with the aim of evaluating the dimensions of this change in terms of the ES that seagrass meadows provide in the Caribbean. Under a changing seascape due to climate change and anthropogenic pressures that have driven the disappearance of most seagrass meadows in the Caribbean, we explore how this invasive seagrass could play a role in restoration attempts as a pioneer species where native species have been lost. The potential unintended consequences of the presence of H. stipulacea to replace services of native species are also noted.

Keywords

Halophila stipulacea Caribbean Sea Pioneer species Functional traits Facilitative interactions 

Notes

Acknowledgements

The present paper is part of the project CIRCULATIONS (Connectivities between islands alters traveling invasive seagrasses), funded by the Leibniz- Centre for Tropical Marine Research (ZMT), Germany. Inés G. Viana was supported with a postdoctoral fellowship from Xunta de Galicia (Consellería de Cultura, Educación e Ordenación Universitaria). D. Willette thanks M. Joaquin for logistics support.

Supplementary material

10530_2019_1924_MOESM1_ESM.docx (41 kb)
Supplementary material 1 (DOCX 41 kb)
10530_2019_1924_MOESM2_ESM.docx (22 kb)
Supplementary material 2 (DOCX 21 kb)
10530_2019_1924_MOESM3_ESM.docx (24 kb)
Supplementary material 3 (DOCX 24 kb)

References

  1. Abed-Navandi D, Dworschak PC (2005) Food sources of tropical thalassinidean shrimps: a stable-isotope study. Mar Ecol Prog Ser 291:159–168CrossRefGoogle Scholar
  2. Alexandre A, Georgiou D, Santos R (2014) Inorganic nitrogen acquisition by the tropical seagrass Halophila stipulacea. Mar Ecol 35:387–394CrossRefGoogle Scholar
  3. Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193CrossRefGoogle Scholar
  4. Becking LE, van Bussel TCJM, Debrot AO, Christianen MJA (2014) First record of a Caribbean green turtle (Chelonia mydas) grazing on invasive seagrass (Halophila stipulacea). Caribb J Sci 48:162–163CrossRefGoogle Scholar
  5. Biermann C, Anderson RM (2017) Conservation, biopolitics, and the governance of life and death. Geogr Compass 11:e12329CrossRefGoogle Scholar
  6. Bremner J (2008) Species’ traits and ecological functioning in marine conservation and management. J Exp Mar Biol Ecol 366:37–47CrossRefGoogle Scholar
  7. Carruthers TJB, van Tussenbroek BI, Dennison WC (2005) Influence of submarine springs and wastewater on nutrient dynamics of Caribbean seagrass meadows. Estuar Coast Shelf Sci 64:191–199CrossRefGoogle Scholar
  8. Charles H, Dukes KS (2008) Impacts of invasive species on ecosystem services. In: Nentwig W (ed) Biological invasions. Ecological studies (analysis and synthesis), vol 193. Springer, Berlin, pp 217–237Google Scholar
  9. Chiquillo KL, Barber PH, Willette DA (2018) Fruits and flowers of the invasive seagrass Halophila stipulacea in the Caribbean Sea. Bot Mar.  https://doi.org/10.1515/bot-2018-0052 Google Scholar
  10. Christianen MJA, Smulders FOH, Engel MS, Nava MI, Willis S, Debrot AO, Palsbøll PJ, Vonk JA, Becking LE (2019) Megaherbivores may impact expansion of invasive seagrass in the Caribbean. J Ecol 107:45–57CrossRefGoogle Scholar
  11. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  12. Costanza R, de Groot R, Braat L, Kubiszewski I, Fioramonti L, Sutton P, Farber S, Grasso M (2017) Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst Serv 28:1–16CrossRefGoogle Scholar
  13. Cullen-Unsworth LC, Nordlund L, Paddock J, Baker S, McKenzie LJ, Unsworth RKF (2014) Seagrass meadows globally as a coupled social–ecological system: implications for human wellbeing. Mar Pollut Bull 83:387–397CrossRefGoogle Scholar
  14. de Groot RS, Wilson MA, Boumans RM (2002) A typology for the classification, description and valuation of ecosystems functions, goods and services. Ecol Econ 41:393–408CrossRefGoogle Scholar
  15. de la Torre-Castro M, Rönnbäck P (2004) Links between humans and seagrasses-an example from tropical East Africa. Ocean Coast Manage 47:361–387CrossRefGoogle Scholar
  16. Debrot AO, Hylkema A, Vogelaar W, Meesters HWG, Engel MS, de Leon R, Prud’homme van Reine WF, Nagelkerken I (2012) Baseline surveys of Lac Bay benthic and fish communities, Bonaire. Institute for Marine Resources and Ecosystems Studies Report C129/12Google Scholar
  17. Diaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–665CrossRefGoogle Scholar
  18. Didham RK, Tylianakis JM, Hutchison MA, Ewers RM, Gemmell NJ (2005) Are invasive species the drivers of ecological change? Trends Ecol Evol 20:470–474CrossRefGoogle Scholar
  19. Dorenbosch M, Verberk W, Nagelkerken I, van der Velde G (2007) Influence of habitat configuration on connectivity between fish assemblages of Caribbean seagrass beds, mangroves and coral reefs. Mar Ecol Prog Ser 334:103–116CrossRefGoogle Scholar
  20. Dromard CR, Vaslet A, Gautier F, Bouchon-Navaro Y, Harmelin-Vivien M, Bouchon C (2017) Resource use by three juvenile scarids (Cryptotomus roseus, Scarus iseri, Sparisoma radians) in Caribbean seagrass beds. Aquat Bot 136:1–8CrossRefGoogle Scholar
  21. Duarte CM (2000) Marine biodiversity and ecosystem services: an elusive link. J Exp Mar Biol Ecol 250:117–131CrossRefGoogle Scholar
  22. Ellis S (2016) Potentially invasive sea grass found in Christiansted Harbor. St. Thomas Source, Sep 22Google Scholar
  23. Enríquez S, Marbà N, Duarte CM, van Tussenbroek BI, Reyes-Zavala G (2001) Effects of seagrass Thalassia testudinum on sediment redox. Mar Ecol Prog Ser 219:149–158CrossRefGoogle Scholar
  24. Fonseca MS, Cahalan JA (1992) A preliminary evaluation of wave attenuation by 4 species of seagrass. Estuar Coast Shelf Sci 35:565–576CrossRefGoogle Scholar
  25. Fourqurean JW, Manuel S, Coates KA, Kenworthy WJ, Smith SR (2010) Effects of excluding sea turtle herbivores from a seagrass bed: overgrazing may have led to loss of seagrass meadows in Bermuda. Mar Ecol Prog Ser 419:223–232CrossRefGoogle Scholar
  26. Gambi MC, Barbieri F, Bianchi CN (2009) New record of the alien seagrass Halophila stipulacea (Hydrocharitaceae) in the western Mediterranean: a further clue to changing Mediterranean Sea biogeography. Mar Biodivers Rec 2:e84CrossRefGoogle Scholar
  27. Georgiou D, Alexandre A, Luis J, Santos R (2016) Temperature is not a limiting factor for the expansion of Halophila stipulacea throughout the Mediterranean Sea. Mar Ecol Prog Ser 544:159–167CrossRefGoogle Scholar
  28. Gillis LG, Bouma TJ, Jones CG, van Katwijk MM, Nagelkerken I, Jeuken CJL, Herman PMJ, Ziegler D (2014) Potential for landscape-scale positive interactions among tropical marine ecosystems. Mar Ecol Prog Ser 503:289–303CrossRefGoogle Scholar
  29. Glenn E, Comarazamy D, González JE, Smith T (2015) Detection of recent regional sea surface temperature warming in the Caribbean and surrounding region. Geophys Res Lett 42:6785–6792CrossRefGoogle Scholar
  30. Herrera-Silveira JA, Cebrian J, Hauxwell J, Ramirez-Ramirez J, Ralph P (2010) Evidence of negative impacts of ecological tourism on turtlegrass (Thalassia testudinum) beds in a marine protected area of the Mexican Caribbean. Aquat Ecol 44:23–31CrossRefGoogle Scholar
  31. Hershner C, Havens KJ (2008) Managing invasive aquatic plants in a changing system: strategic consideration of ecosystem services. Conserv Biol 22:544–550CrossRefGoogle Scholar
  32. Holzer KK, Rueda JL, McGlathery KJ (2011) Caribbean seagrasses as a food source for the emerald neritid Smaragdia viridis. Am Malacol Bull 29:63–67CrossRefGoogle Scholar
  33. Hylkema A, Vogelaar W, Meesters HWG, Nagelkerken I, Debrot AO (2015) Fish species utilization of contrasting sub-habitats distributed along an ocean-to-land environmental gradient in a tropical mangrove and seagrass lagoon. Estuar Coasts 38:1448–1465CrossRefGoogle Scholar
  34. Jackson EL, Rowden AA, Attrill MJ, Bossey SJ, Jones MB (2001) The importance of seagrass beds as a habitat for fishery species. Oceanogr Mar Biol Annu Rev 39:269–303Google Scholar
  35. Jax K (2005) Function and “functioning” in ecology: what does it mean? Oikos 111:641–648CrossRefGoogle Scholar
  36. Jordan NR, Larson DL, Huerd SC (2008) Soil modification by invasive plants: effects on native and invasive species of mixed-grass prairies. Biol Invasions 10:177–190CrossRefGoogle Scholar
  37. Kairo M, Ali B (2003) Invasive species threats in the Caribbean region. Report to the Nature Conservancy. CAB InternationalGoogle Scholar
  38. Kannan RRR, Arumugam R, Anantharaman P (2010) Antibacterial potential of three seagrasses against human pathogens. Asian Pac J Trop Med 3:890–893CrossRefGoogle Scholar
  39. Kerninon F (2012) Première actions de mis en place d’un réseau d’observation desherbiers de l’Outre-mer (First actions in setting up an overseas seagrass moni-toring network). Dissertation, Universite de Bretagne Occidentale (in French) Google Scholar
  40. Kilminster K, McMahon K, Waycott M, Kendrick GA, Scanes P, McKenzie L, O’Brien KR, Lyons M, Ferguson A, Maxwell P et al (2015) Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci Total Environ 534:97–109CrossRefGoogle Scholar
  41. Koltes KH, Opishinski TB (2009) Patterns of water quality and movement in the vicinity of Carrie Bow Cay, Belize. Smithson Contrib Mar Sci 38:379–390Google Scholar
  42. Lee KS, Park JI (2008) An effective transplanting technique using shells for restoration of Zostera marina habitats. Mar Pollut Bull 56:1015–1021CrossRefGoogle Scholar
  43. Lefcheck JS, Orth RJ, Dennison WC, Wilcox DJ, Murphy RR, Keisman J, Gurbisz C, Hannam M, Landry JB, Moore KA et al (2018) Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. PNAS 115:3658–3662CrossRefGoogle Scholar
  44. Linton D, Fisher T (2004) CARICOMP-Caribbean coastal marine productivity program: 1993–2003. Caribbean Coastal Marine Productivity (CARICOMP) Program. CARICOMPGoogle Scholar
  45. Lipkin Y (1975) Halophila stipulacea in Cyprus and Rhodes, 1967–1970. Aquat Bot 1:309–320CrossRefGoogle Scholar
  46. Lipkin Y (1979) Quantitative aspects of seagrass communities, particularly of those dominate by Halophila stipulacea, in Sinai (Northern Red Sea). Aquat Bot 7:119–128CrossRefGoogle Scholar
  47. MacDougall AS, Turkington R (2005) Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86:42–55CrossRefGoogle Scholar
  48. Maréchal J-P, Meesters EH, Vedie F, Hellio C (2013) Occurrence of the alien seagrass Halophila stipulacea in Martinique (French West Indies). Mar Biodivers Rec 6:e127CrossRefGoogle Scholar
  49. Maxwell PS, Eklöf JS, van Katwijk MM, O’Brien KR, de la Torre-Castro M, Boström C, Bouma TJ, Krause-Jensen D, Unsworth RKF, van Tussenbroek BI et al (2017) The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems—a review. Biol Rev 92:1521–1538CrossRefGoogle Scholar
  50. Moberg F, Rönnbäck P (2003) Ecosystem services of the tropical seascape: interactions, substitutions and restoration. Ocean Coast Manag 46:27–46CrossRefGoogle Scholar
  51. Moran KL, Bjorndal KA (2005) Simulated green turtle grazing affects structure and productivity of seagrass pastures. Mar Ecol Prog Ser 305:235–247CrossRefGoogle Scholar
  52. Murdoch TJT, Glasspool AF, Outerbridge M, Ward J, Manuel S, Gray J, Nash A, Coates KA, Pitt J, Fourqurean JW et al (2007) Large-scale decline in offshore seagrass meadows in Bermuda. Mar Ecol Prog Ser 339:123–130CrossRefGoogle Scholar
  53. Nagelkerken I, van der Velde G, Gorissen MW, Meijer GJ, Van’t Hof T, den Hartog C (2000) Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar Coast Shelf Sci 51:31–44CrossRefGoogle Scholar
  54. Nagelkerken I, Roberts CM, van der Velde G, Dorenbosch M, van Riel MC, de la Morinière EC, Nienhuis PH (2002) How important are mangroves and seagrass beds for coral-reef fish? The nursery hypothesis tested on an island scale. Mar Ecol Prog Ser 244:299–305CrossRefGoogle Scholar
  55. Nordlund LM, Koch EW, Barbier EB, Creed JC (2016) Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE 11(10):e0163091CrossRefGoogle Scholar
  56. Ogden JC, Gladfelter EH (1983) Coral reefs, seagrass beds and mangroves: their interactions in the coastal zones of the Caribbean. UNESCO Report Marine Science 23. UNESCO, ParisGoogle Scholar
  57. Olinger LK, Heidmann SL, Durdall AN, Howe C, Ramseyer T, Thomas SG, Lasseigne DN, Brown EJ, Cassell JS, Donihe MM et al (2017) Altered juvenile fish communities associated with invasive Halophila stipulacea seagrass habitats in the U.S. Virgin Islands. PLoS ONE 12:e0188386CrossRefGoogle Scholar
  58. Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S et al (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996CrossRefGoogle Scholar
  59. Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human well-being. Trends Ecol Evol 24:497–504CrossRefGoogle Scholar
  60. Peterson BJ, Heck KL (2001) Positive interactions between suspension-feeding bivalves and seagrass—a facultative mutualism. Mar Ecol Prog Ser 213:143–155CrossRefGoogle Scholar
  61. Potouroglou M, Bull JC, Krauss KW, Kennedy HA, Fusi M, Daffonchio D, Mangora MM, Githaiga MN, Diele K, Huxham M (2017) Measuring the role of seagrasses in regulating sediment surface elevation. Sci Rep 7:11917CrossRefGoogle Scholar
  62. Rodriguez LF (2006) Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol Invasions 8:927–939CrossRefGoogle Scholar
  63. Rogers CS, Beets J (2001) Degradation of marine ecosystems and decline of fishery resources in marine protected areas in the US Virgin Islands. Environ Conserv 28:312–322CrossRefGoogle Scholar
  64. Rogers CS, Willette DA, Miller J (2014) Rapidly spreading seagrass invades the Caribbean with unknown ecological consequences. Front Ecol Environ 12:546–547CrossRefGoogle Scholar
  65. Ruiz H, Ballantine DL (2004) Occurrence of the seagrass Halophila stipulacea in the tropical west Atlantic. Bull Mar Sci 75:131–135Google Scholar
  66. Ruiz H, Ballantine DL, Sabater J (2017) Continued spread of the seagrass Halophila stipulacea in the Caribbean: Documentation in Puerto Rico and the British Virgin Islands. Gulf Caribb Res 28:SC5–SC7CrossRefGoogle Scholar
  67. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  68. Scheibling RE, Patriquin DG, Filbee-Dexter K (2018) Distribution and abundance of the invasive seagrass Halophila stipulacea and associated benthic macrofauna in Carriacou, Grenadines, Eastern Caribbean. Aquat Bot 144:1–8CrossRefGoogle Scholar
  69. Schwarz A-M, Hellblom F (2002) The photosynthetic light response of Halophila stipulacea growing along a depth gradient in the Gulf of Aqaba, the Red Sea. Aquat Bot 74:263–272CrossRefGoogle Scholar
  70. Sharon Y, Beer S (2008) Diurnal movements of chloroplasts in Halophila stipulacea and their effect on PAM fluorometric measurements of photosynthetic rates. Aquat Bot 88:273–276CrossRefGoogle Scholar
  71. Sharon Y, Levitan O, Spungin D, Berman-Frank I, Beer S (2011) Photoacclimation of the seagrass Halophila stipulacea to the dim irradiance at its 48-meter depth limit. Limnol Oceanogr 56:357–362CrossRefGoogle Scholar
  72. Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol 350:3–20CrossRefGoogle Scholar
  73. Smulders FOH, Vonk JA, Engel MS, Christianen MJA (2017) Expansion and fragment settlement of the non-native seagrass Halophila stipulacea in a Caribbean bay. Mar Biol Res 13:967–974CrossRefGoogle Scholar
  74. Steiner SCC, Willette DA (2014) Dimming sand halos on coral reefs in Dominica: new expansion corridors for the invasive seagrass Halophila stipulacea. Reef Encount 30:43–45Google Scholar
  75. Steiner SCC, Willette DA (2015) The expansion of Halophila stipulacea (Hydrocharitaceae, Angiospermae) is changing the seagrass landscape in the commonwealth of Dominica, Lesser Antilles. Caribb Nat 22:1–19Google Scholar
  76. Stephenson TS, Vincent LA, Allen T, Van Meerbeeck CJ, McLean N, Peterson TC, Taylor MA, Aaron-Morrison AP, Auguste T, Bernard D et al (2014) Changes in extreme temperature and precipitation in the Caribbean region, 1961–2010. Int J Climatol 34:2957–2971Google Scholar
  77. Storkey J, Brooks D, Haughton A, Hawes C, Smith BM, Holland JM (2013) Using functional traits to quantify the value of plant communities to invertebrate ecosystem service providers in arable landscapes. J Ecol 101:38–46CrossRefGoogle Scholar
  78. Szmant AM, Forrester A (1996) Water column and sediment nitrogen and phosphorus distribution patterns in the Florida Keys, USA. Coral Reefs 15:21–41CrossRefGoogle Scholar
  79. Tribble GW (1981) Reef-basel herbivores and the distribution of two seagrasses (Syringodium filiforme and Thalassia testudinum) in the San Blas Islands (Western Caribbean). Mar Biol 65:277–281CrossRefGoogle Scholar
  80. van Katwijk MM, Thorhaug A, Marbà N, Orth RJ, Duarte CM, Kendrick GA, Althuizen IHJ, Balestri E, Bernard G, Cambridge ML et al (2016) Global analysis of seagrass restoration: the importance of large-scale planting. J Appl Ecol 53:567–578CrossRefGoogle Scholar
  81. van Tussenbroek BI, Cortes J, Collin R, Fonseca AC, Gayle PMH, Guzmán HM, Jácome GE, Juman R, Koltes KH, Oxenford HA et al (2014) Caribbean-wide, long-term study of seagrass beds reveals local variations, shifts in community structure and occasional collapse. PLoS ONE 9(3):e98377Google Scholar
  82. van Tussenbroek BI, van Katwijk MM, Bouma TJ, van der Heide T, Govers LL, Leuven RSEW (2016) Non-native seagrass Halophila stipulacea forms dense mats under eutrophic conditions in the Caribbean. J Sea Res 115:1–5CrossRefGoogle Scholar
  83. Vera B, Collado-Vides L, Moreno C, van Tussenbroek BI (2014) Halophila stipulacea (Hydrocharitaceae): a recent introduction to the continental waters of Venezuela. Caribb J Sci 48:66–70CrossRefGoogle Scholar
  84. Wahbeh MI (1984) The growth and production of the leaves of the seagrass Halophila stipulacea (Forsk.) Aschers. From Aqaba Jordan. Aquat Bot 20:33–41CrossRefGoogle Scholar
  85. Weitzman JS, Zeller RB, Thomas FIM, Koseff JR (2015) The attenuation of current- and wave-driven flow within submerged multispecific vegetative canopies. Limnol Oceanogr 60:1855–1874CrossRefGoogle Scholar
  86. Welsh DT (2000) Nitrogen fixation in seagrass meadows: regulation, plant-bacteria interactions and significance to primary productivity. Ecol Lett 3:58–71CrossRefGoogle Scholar
  87. Willette DA, Ambrose RF (2009) The distribution and expansion of the invasive seagrass Halophila stipulacea in Dominica, West Indies, with a preliminary report from St. Lucia. Aquat Bot 91:137–142CrossRefGoogle Scholar
  88. Willette DA, Ambrose RF (2012) Effects of the invasive seagrass Halophila stipulacea on the native seagrass, Syringodium filiforme, and associated fish and epibiota communities in the Eastern Caribbean. Aquat Bot 103:74–82CrossRefGoogle Scholar
  89. Willette DA, Chalifour J, Debrot AOD, Engel MS, Miller J, Oxenford HA, Short FT, Steiner SCC, Védie F (2014) Continued expansion of the trans-Atlantic invasive marine angiosperm Halophila stipulacea in the Caribbean. Aquat Bot 112:98–102CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Leibniz Centre for Tropical Marine Research GmbHBremenGermany
  2. 2.CIIMAR - Interdisciplinary Centre of Marine and Environmental ResearchUniversity of PortoMatosinhosPortugal
  3. 3.Department of Ecology and Animal BiologyUniversity of VigoVigo, GaliciaSpain
  4. 4.Biology DepartmentLoyola Marymount UniversityLos AngelesUSA

Personalised recommendations